Phys 221 - Test 3 - April 16, 2004

1. (25 pts) A surface charge density $\sigma(\phi)$ is glued over the surface of an infinite cylinder of radius R. The surface charge density is given by $\sigma(\phi)=\sigma_{0} \sin (3 \phi)$ where σ_{0} is a constant.
a) Determine the total charge on the cylinder.
b) Find the electric potential $V(s, \phi)$ inside and outside the cylinder.
2. (25 pts) Three charges lie in the $x y$ plane as shown. There is a charge q at $y=0$, a charge $2 q$ at $y=a$, and a charge q at $x=a$.
a) Calculate the monopole and dipole moments for this distribution.

b) Find the approximate potential at points far from the distribution. Give your results in spherical coordinates.
3. (25 pts) A dipole \vec{p} is situated a distance z above an infinite grounded conducting plane. The dipole makes an angle θ with the perpendicular to the plane.
a) Draw the image dipole.
b) Find the torque on the dipole due to the image dipole.
4. (25 pts) A certain coaxial cable consists of a copper wire, radius a, surrounded by a concentric copper tube of inner radius c. The space from a to b is filled with material of dielectric constant $\varepsilon_{r 1}$ and the space from b to c is filled with material of dielectric constant $\varepsilon_{r 2}$. The radii are such that $b=2 a$ and $c=4 a$. In addition $\varepsilon_{r 1}=2$ and $\varepsilon_{r 2}=1.5$. Assume the inner cylindrical conductor of radius a has charge per unit length λ.
a) Determine the displacement \vec{D} in each region.
b) Determine the electric field \vec{E} and the polarization \vec{P} in each region.
c) Find the capacitance per unit length of the coaxial cable.
$\underline{\text { Solution to Laplace's equation, }} \nabla^{2} V=0$

Cylindrical Coordinates (no z dependence):
$V(s, \phi)=A_{0}+B_{0} \ln s+\sum_{m=1}^{\infty} s^{m}\left(A_{m} \cos m \phi+B_{m} \sin m \phi\right)+\sum_{m=1}^{\infty} \frac{1}{s^{m}}\left(C_{m} \cos m \phi+D_{m} \sin m \phi\right)$

If $f(\phi)=\sum_{m=1}^{\infty}\left\{A_{m} \cos (m \phi)+B_{m} \sin (m \phi)\right\}$, then

$$
A_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\phi) \cos (m \phi) d \phi \quad \text { and } \quad B_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\phi) \sin (m \phi) d \phi
$$

Electric field due to a dipole $\vec{E}=\frac{k_{e}}{r^{3}}[3(\vec{p} \cdot \hat{r}) \hat{r}-\vec{p}]$
Bound charge $\rho_{b}=-\vec{\nabla} \cdot \vec{P} \quad \sigma_{b}=\vec{P} \cdot \hat{n}$

$$
\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}=\varepsilon_{0} \vec{E}+\varepsilon_{0} \chi_{e} \vec{E}=\varepsilon \vec{E}=\varepsilon_{r} \varepsilon_{0} \vec{E}
$$

