1. (25 pts) A thick spherical shell (inner radius a, outer radius b) is made of dielectric material with a "frozen-in" polarization $\vec{P}(r)=\frac{C}{r^{4}} \hat{r}$, where C is a constant and r is the distance from the center. There is no free charge in the problem.
a) Calculate all the bound charges and then use Gauss's Law for \vec{E} to calculate the field in all three regions.
b) Determine the potential at the center of the thick spherical shell, i.e., at $r=0$.
2. (25 pts) A parallel plate capacitor is filled with two dielectrics with dielectric constants $\varepsilon_{r 1}=1.5$ and $\varepsilon_{r 2}=2$ as shown. A third of the capacitor is filled with $\varepsilon_{r 1}$, a third of the capacitor is filled with air, and a third is filled with $\varepsilon_{r 2}$.
a) Determine the capacitance of the arrangement in terms of the original capacitance C_{0} with no dielectric material present $\left(C_{0}=\varepsilon_{0} A / d\right)$. The area
 of a plate is A and d is the distance between the plates.
b) For a given potential difference V between the plates, find the free and bound surface charge densities on all surfaces.
3. (25 pts) A steady current I flows down a long hollow cylindrical wire (inner radius a, outer radius b). The volume current density $\vec{J}=C s^{2} \hat{z}$, where C is a constant and \hat{z} is in the direction of the current I.
a) Determine the constant C.
b) Determine the magnetic field for all s, i.e., $s<a ; a<s<b ; s>b$.
4. (25 pts) A spherical conductor, of radius a, carries a charge Q. It is surrounded by linear dielectric material with a dielectric constant ε_{r}, out to a radius b.
a) Determine the electric field and the displacement in all three regions, $r<a ; \quad a<r<b ; \quad r>b$.
b) Determine the energy of this configuration.
