1. (25 pts) Three charges lie in the yz plane as shown. There is a charge ! q at y = ! a, a charge ! q at y = a, and a charge 2q at z = a.

a) Calculate the monopole and dipole moments for this distribution.

b) Find the approximate potential at points far from the distribution. Give your results in spherical coordinates.

2. (25 pts) A thick spherical shell (inner radius *a*, outer radius *b*) is made of dielectric material with a "frozen-in" polarization $\vec{P}(\vec{r}) = Ar^3\hat{r}$, where *A* is a constant and *r* is the distance from the center. There is no free charge in the problem.

a) Calculate all the bound charges and then use Gauss's Law for \vec{E} to calculate the field in all three regions.

b) Determine the potential at the center of the thick spherical shell, *i.e.*, at r = 0.

3. (25 pts) A parallel plate capacitor is filled with three dielectrics with dielectric constants g_1, g_2 , and g_3 as shown. Half the capacitor is filled with g_3 . The other half is divided equally between g_1 and g_2 . Determine the capacitance of the arrangement in terms of the original capacitance C_0 with no dielectric

material present $(C_0 = \varepsilon_0 A/d)$. The area of a plate is A and d is the distance between the plates.

4. (25 pts) A sphere of linear dielectric material, radius *R*, and dielectric constant ε_r is placed in an otherwise uniform electric field \vec{E}_0 .

a) Determine the potential inside and outside the sphere.

b) Determine the electric field inside the sphere.

c) What is the dipole moment of the sphere?

