Phys 221 - E\&M I - Test 2 - March 11, 2005

1. (25 pts) Find the force on the $-2 q$ charge in the figure. The $x y$ plane is a grounded conductor.

2. (25 pts) A spherical shell of radius R has a potential V_{0} on the "northern" hemisphere and a zero potential on the "southern" hemisphere. That is:

$$
V_{0}(\theta)=\left\{\begin{array}{l}
V_{0}=\text { constant } \quad 0 \leq \theta \leq \frac{\pi}{2} \\
0 \quad \frac{\pi}{2} \leq \theta \leq \pi
\end{array}\right.
$$

Find the potential inside and outside the sphere. Calculate the coefficients explicitly up to A_{2} and B_{2}.
3. (25 pts) An uncharged (grounded) metal sphere of radius R is placed in a uniform electric field given by $\vec{E}=E_{0} \hat{z}$.
a) Determine the potential inside and outside the metal sphere.
b) Determine the induced surface charge density $\sigma(\theta)$ on the metal sphere.
4. (25 pts) A rectangular metal pipe, running parallel to the z-axis (from $-\infty$ to $+\infty$), has three grounded metal sides, at y $=0, y=a$, and $x=0$. The fourth side, at $x=b$, is maintained at a constant potential V_{0}.
Note that the symbol for ground or $V=0$ is
a) Determine an expression for the
 potential in the region enclosed by the pipe.
b) Determine an expression for the charge density $\sigma(x)$ on the bottom plate at $y=0$.

