1. A sphere of radius R carries a charge density $\rho(r)=A r^{2}$, where A is a constant.
a) Determine the electric field inside and outside the sphere.
b) Find the electrostatic energy stored in the sphere.
2. A metal sphere of radius R carries a total charge Q. What is the force of repulsion between the "northern" hemisphere and the "southern" hemisphere?
3. An infinitely long neutral (or grounded) metal pipe, of radius R, is placed at right angles to an otherwise uniform electric field \vec{E}_{0}.
a) Find the potential inside and outside the cylindrical pipe.
b) Find the surface charge density induced on the cylindrical pipe.
4. The charge density at the surface of a sphere of radius R is given by $\sigma(\theta)=\sigma_{0} \cos \theta$, where σ_{0} is a constant. Find the potential inside and outside the sphere.
