$$
\text { Phys. } 221 \text { - E \& M-I - Test 2- April 4, } 2001
$$

1. A sphere of radius R carries a charge density $\rho(r)=A r$, where A is a constant.
a) Determine the electric field inside the sphere.
b) Find the net force that the "southern" hemisphere exerts on the "northern" hemisphere.
2. A uniform line charge λ is placed on an infinite straight wire, a distance d above a grounded conducting plane. Assume the wire runs parallel to the x -axis at a distance d above it, and the conducting plane is the $x y$ plane.
a) Use Gauss's Law to find the potential of an isolated line charge λ.
b) Find the potential in the region above the conducting plane.
3. A charge density $\sigma(\phi)=\sigma_{0} \cos (3 \phi)$ (where σ_{0} is a constant) is glued over the surface of an infinite cylinder of radius R.
a) Give a reason why A_{0} and B_{0} in the general solution are both equal to zero.
b) Give a reason why the only non-zero constants in the general solution are A_{3} and C_{3}.
c) Give a general form for the potential inside and outside the cylinder.
d) Find the potential inside and outside the cylinder.
4. A neutral conducting sphere of radius R is placed in an otherwise uniform electric field \vec{E}_{0}. Hint: You only need to consider the $\ell=1$ terms in the general solution.
a) Find the potential outside the conducting sphere.
