Phys. 221 - E \& M- I - Test 1 - Feb. 18, 2005

1. $(25 \mathrm{pts})$ An electrostatic field is given by $\vec{E}=C\left[s^{2}\left(2+\sin ^{3} \phi\right) \hat{s}+s^{2}\left(\sin ^{2} \phi \cos \phi\right) \hat{\phi}+3 z \hat{z}\right]$, where C is a constant with the appropriate units.
a) Verify that this is a possible electrostatic field.
b) Find the potential, using the origin as your reference point. Use the indicated path from the origin to the point; that is, go from 0 to s along the path with φ fixed and then from 0 to
 z up to the point.
2. (25 pts) Find the electric field at a distance z above the center of a flat circular disk of inner radius a and outer radius b which carries a uniform surface charge σ. The disk is in the $x y$-plane.

3. (25 pts) A metal sphere of radius R, carrying a charge q, is surrounded by a thick concentric metal shell of inner radius a and outer radius b. The shell carries no net charge.
a) Find the surface charge density σ at R, at a, and at b.
b) Find the potential at the center, using infinity as the reference point.

c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero. How do the answers to (a) and (b) change?
4. (25 pts) A hollow spherical shell carries a charge density

$$
\rho(r)=\frac{A}{r} \quad \text { for } a \leq r \leq b, \text { where } A \text { is a constant. }
$$

a) Find the electric field in each of the three regions:
(i) $r<a$, (ii) $a<r<b$, (iii) $r>b$.
b) Find the energy stored in the distribution, i.e., the work done to
 assemble the charge distribution.

