Phys. 221 - E \& M- I - Test 1 - Feb. 20, 2004

1. (25 pts) Find the electric field $\vec{E}(z)$ at a distance z above a charge distribution which consists of a half disk of radius R lying in the $x y$ plane. The half disk has a surface charge distribution given by $\sigma=\sigma_{0} \sin \phi$, where σ_{0} is a constant. Note:

$$
\sin ^{2}(\alpha)=\frac{1}{2}(1-\cos (2 \alpha)) \quad \cos ^{2}(\alpha)=\frac{1}{2}(1+\cos (2 \alpha))
$$

2. (25 pts) An electrostatic field is given by $\vec{E}=C\left[\left(3 s^{2} z^{2} \sin \phi\right) \hat{s}+\left(s^{2} z^{2} \cos \phi\right) \hat{\phi}+\left(2 z s^{3} \sin \phi\right) \hat{z}\right]$, where
C is a constant with the appropriate units.
a) Verify that this is a possible electrostatic field.
b) Find the potential, using the origin as your reference point. Use the indicated path from the origin to the point; that is, go from 0 to s along the path with φ fixed and then from 0 to z up to the point.

3. (25 pts) A long cylinder of radius R carries a volume charge density that is proportional to the distance from the axis. The volume charge density is given by $\rho(s)=A s ; \quad 0<s<R$, where A is a constant.
a) Find the electric field as a function of s inside and outside the long cylinder.
b) Find the electric potential as a function of s inside and outside the cylinder. Use $s=R$ as the reference point for the electric potential.
4. (25 pts) a) Two charges are situated symmetrically about the y axis in the $x y$ plane as shown. One charge q is located at $(x, y)=(a, 0)$ and the other charge q is located at $(-a, 0)$. How much work does it take to bring in another charge $2 q$, from far away and place it at the location $(0, a)$?
b) How much work does it take to assemble the whole configuration of three charges?

