Phys. 221 - E \& M I - Test 1 - Feb. 21, 2003

1. (25 pts) A half of a circular loop of radius R lies in the $x y$ plane and carries a line charge described by
$\lambda(\phi)=\lambda_{0} \sin \phi ; \quad 0 \leq \phi \leq \pi$, where λ_{0} is a constant and ϕ is measured from the x axis. Take the origin to be where the center of a complete loop would be.

Find the electric field a distance z above the origin.
You may recall:

$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
2. (25 pts) A long coaxial cable consists of a conducting inner cylinder of radius a and a thick outer conducting cylinder of inner radius b and outer radius c (Note: $a<b<c$). The surface charge density on the inner cylinder is σ.
a) Find the surface charge densities σ_{b}, σ_{c}.
b) Find the electric field in each of the four regions:
(i) inside the inner cylinder, $s<a$.
(ii) between the cylinders, $a<s<b$.
(iii) inside the thick outer cylinder, $b<s<c$.
(iv) outside the cable, $s>c$.

b) If the outer cylinder is now grounded, find the capacitance per unit length of the arrangement.
3. (25 pts) A sphere of radius R carries a charge density $\rho(r)=A r^{2}$, where A is a constant.
a) Determine the electric field inside and outside the sphere.
b) Find the electrostatic energy stored in the sphere.
4. (25 pts) a) Compute the divergence of the function

$$
\vec{v}=(r \cos \phi) \hat{r}+(r \sin \theta) \hat{\theta}+r \hat{\phi}
$$

b) Check the divergence theorem for this function, using as your volume half of an inverted hemispherical bowl of radius R, resting on the $x y$ plane and centered at the origin.

