Phys. 221 - E \& M- I - Test 1 - Feb. 20, 2002

1. $(25 \mathrm{pts})$ An electrostatic field is given by $\vec{E}=C\left[s\left(2+\sin ^{2} \phi\right) \hat{s}+s(\sin \phi \cos \phi) \hat{\phi}+3 z \hat{z}\right]$, where C is a constant with the appropriate units.
a) Verify that this is a possible electrostatic field.
b) Find the potential, using the origin as your reference point. Use the indicated path from the origin to the point; that is, go from 0 to s along the path with φ fixed and then from 0
 to z up to the point.
2. (25 pts) A spherical system consists of an inner spherical ball of radius a surrounded by a thick spherical shell of inner radius b and outer radius c (Note: $a<$ $b<c)$. The volume charge densities on the inner sphere and the outer shell are given by $\rho(r)=A r^{2} ; \quad 0<r<a$ and $\rho(r)=-B / r^{2} ; \quad b<r<c$, where A and B are both positive constants.

Find the electric field in each of the four regions:
(i) inside the inner sphere, $r<a$.

(ii) between the inner sphere and the outer shell, $a<r<b$.
(iii) inside the thick outer shell, $b<r<c$.
(iv) outside the spherical system, $r>c$.
3. (25 pts) Find the electric potential at a distance z above a charge distribution which consists of a half disk of radius R lying in the $x y$ plane. The half disk has a surface charge distribution given by $\sigma=\sigma_{0} \sin \phi$, where σ_{0} is a constant.

4. (25 pts) a) Compute the divergence of the function

$$
\vec{v}=\left(r \cos ^{2} \theta\right) \hat{r}-(r \cos \theta \sin \theta) \hat{\theta}+3 r \hat{\phi}
$$

b) Check the divergence theorem for this function, using as your volume the octant of a sphere of radius

