Phys. 221 - E \& M- I - Test 1 - Feb. 19, 2001

1. (25 pts) a) Compute the divergence of the function

$$
\vec{v}=\left(s^{2} \sin \phi\right) \hat{s}+\left(s^{2} \cos \phi\right) \hat{\phi}+\left(2 z^{2}\right) \hat{z}
$$

b) Check the divergence theorem for this function, using as your volume the half-cylinder of radius R and height h whose base is on the $x y$ plane and centered about the y-axis.

2. $(25 \mathrm{pts})$ An electrostatic field is given by $\vec{E}=k\left[2 x y \hat{x}+\left(2 y z+x^{2}\right) \hat{y}+y^{2} \hat{z}\right]$, where k is a constant with the appropriate units.
a) Verify that this is a possible electrostatic field.
b) Find the potential, using the origin as your reference point.
3. (25 pts) A long coaxial cable consists of an inner cylinder of radius a and a thick outer cylinder of inner radius b and outer radius c (Note: $a<b<c$). The volume charge densities on the inner and outer cylinders are given by $\rho(s)=A s^{2} ; \quad 0<s<a$ and $\rho(s)=-B / s^{2} ; \quad b<s<c$, where A and B are both positive constants. Assume the cable as a whole is electrically neutral.

Find the electric field in each of the four regions:
(i) inside the inner cylinder, $s<a$.
(ii) between the cylinders, $a<s<b$.
(iii) inside the thick outer cylinder, $b<s<c$.
(iv) outside the cable, $s>c$.

4. (25 pts) A uniformly charged solid sphere has a radius R and a total charge q.
a) Find the electric field inside and outside the sphere, i.e., as a function of r.
b) Find the electric potential inside and outside the sphere, i.e., as a function of r. Use infinity as your reference point.

