1. (17 pts) A hollow spherical shell carries a charge density

$$\rho(r) = \frac{A}{r}$$
 for $a \le r \le b$, where A is a constant

a) Find the electric field in each of the three regions: (i) r < a, (ii) a < r < b, (iii) r > b.

b) Find the energy stored in the distribution, *i.e.*, the work done to assemble the charge distribution.

2. (17 pts) An uncharged (grounded) metal sphere of radius *R* is placed in a uniform electric field given by $\vec{E} = E_0 \hat{z}$.

a) Determine the potential inside and outside the metal sphere.

b) Determine the induced surface charge density $\sigma(\theta)$ on the metal sphere.

3. (17 pts) A parallel plate capacitor is filled with three dielectrics with dielectric constants ε_{r1} , ε_{r2} , and ε_{r3} as shown. Half the capacitor is filled with ε_{r3} . The other half is divided equally between ε_{r1} and ε_{r2} . The total area of a plate is *A* and *d* is the distance between the plates.

Determine the total capacitance of the

arrangement in terms of the original capacitance C_0 with no dielectric material

present
$$(C_0 = \varepsilon_0 A/d)$$
 if $\varepsilon_{r_1} = 3$, $\varepsilon_{r_2} = 6$, and $\varepsilon_{r_3} = 4$.

4. (17 pts) Consider a long coaxial cable. The center conductor $s \le a$ carries a current *I* to the right and the outer conductor $b \le s \le c$ carries the return current *I* to the left. The currents are uniformly distributed in the conductors.

Use Ampere's Law to find the magnetic field \vec{B} for all s.

5. (17 pts) A long circular cylinder of radius *R* carries a magnetization $\vec{M} = as^2 \hat{\phi}$, where *a* is a constant, *s* is the distance from the axis, and $\hat{\phi}$ is the usual azimuthal unit vector.

a) Determine the bound currents, \vec{J}_b and \vec{K}_b .

b) Use Ampere's Law with the magnetic field \vec{B} to determine the field inside and outside the cylinder.

c) Use Ampere's Law with the auxiliary field \vec{H} to determine the magnetic field inside and outside the cylinder.

6. (17 pts) A phonograph record of radius R, carrying a uniform surface charge σ , is rotating at constant angular velocity ω about its axis which is pointing in the z direction.

a) Determine the surface current density *K* at a distance *s* from the center.

b) Find its magnetic dipole moment.

c) What is the magnetic field \vec{B} in the *xy* plane at a distance *s* from the origin at the center of the phonograph record if s >> R?

Electric field due to an electric dipole $\vec{E} = \frac{k_e}{r^3} [3(\vec{p} \cdot \hat{r})\hat{r} - \vec{p}]$

Bound charge $\rho_b = -\vec{\nabla} \cdot \vec{P}$ $\sigma_b = \vec{P} \cdot \hat{n}$

Magnetic field due to a magnetic dipole $\vec{B} = \frac{k_m}{r^3} \Big[3(\vec{m} \bullet \hat{r})\hat{r} - \vec{m} \Big]$

Bound currents $\vec{J}_b = \nabla \times \vec{M}$ $\vec{K}_b = \vec{M} \times \hat{n}$

Biot-Savart Law $\vec{B}(\vec{r}) = k_m \int \frac{\vec{I} \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} dl'$