Phys. 208 – Theoretical Physics – Final (May 11, 2009)

- 1.(17 pts) a) Find and plot the roots of $\sqrt[3]{-8i}$.
- b) Evaluate $(-i)^i$ in Cartesian form, *i.e.*, x + iy form.
- c) Determine the points in the (x, y) plane that satisfy the equation |z-2+3i|=4.
- 2.(17 pts) Derive the general expression for the integral $I_n = \int_0^\infty x^{2n} e^{-ax^2} dx$, given that $I_0 = \frac{1}{2}\sqrt{\frac{\pi}{a}}$ as follows:

a) By taking a derivative of I_n , determine the recursion relation for I_n , *i.e.*, $I_{n+1} = [\cdots] \frac{dI_n}{da}$. b) Use your recursion relation to find the general form for the integral I_n .

3.(17 pts) a) Find the Fourier transform of the function, $f(x) = \begin{cases} 1 & -2 < x < 0 \\ -1 & 0 < x < 2 \end{cases}$

b) Write f(x) as an integral and use your result to evaluate $\int_0^\infty \frac{(\cos 2\alpha - 1)\sin 2\alpha}{\alpha} d\alpha$.

c) Use Parseval's theorem to evaluate the integral $\int_0^\infty \frac{[\cos 2\alpha - 1]^2}{\alpha^2} d\alpha$.

4.(17 pts) The normalized wave function for the one-dimensional harmonic oscillator is given by $\psi(x) = Ae^{-ax^2/2}$, where $a = m\omega/\hbar$ and x is defined as $-\infty < x < \infty$.

- a) Determine A.
- b) Determine $\langle x \rangle$ and $\langle x^2 \rangle$.
- c) Determine the uncertainty in x, *i.e.*, Δx or σ_x .

5.(17 pts) Solve the following differential equation using the power series method.

$$y'' + xy = 0$$

a) Determine the recursion relation for the coefficients a_n if $y(x) = \sum_{n=0}^{\infty} a_n x^n$.

Hint: Shift all powers of *x* to the highest exponent and take out the terms, *i.e.*, 'outliers', that do not match the general form.

b) Determine the solution y(x) for at least the first six (6) lowest powers of nonzero terms of the series.

6.(17 pts) A ball of mass *M* and radius *R* rolls without slipping down an inclined plane under the action of gravity. The incline plane is at an angle α . The moment of inertia of the ball about an axis through its center is given by $I = \frac{2}{5}MR^2$.

- a) Determine the Lagrangian which describes the motion of the ball.
- b) Determine Lagrange's equation of motion for the ball.
- c) Determine the acceleration of the center-of-mass of the ball down the incline plane.