1.(17 pts) Find the general form for the integral $I_{n}=\int_{0}^{\infty} x^{n} e^{-a x} d x$ for $n=1,2,3, \ldots$, given that $I_{0}=\int_{0}^{\infty} e^{-a x} d x=\frac{1}{a}$. Determine the recursion, that is, how I_{n+1} is related to I_{n}.
2.(17 pts) Consider the integral $I=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(x^{2}+y^{2}\right) x y}{1+\left(x^{2}-y^{2}\right)^{2}} e^{-a x y} d x d y$. Make the change of variables as follows: let $u=x^{2}-y^{2}$ and $v=x y$ and evaluate I. Determine the integration range for the new variables u and v.
3. (17 pts) Calculate the curl of the vector, $\vec{A}(r, \theta, \phi)=\left(r \cos ^{2} \theta\right) \hat{e}_{r}-(r \cos \theta \sin \theta) \hat{e}_{\theta}+3 r \hat{e}_{\phi}$, i.e., $\vec{\nabla} \times \vec{A}$, in spherical coordinates.
4. (17 pts) A function over one period is given as $f(x)=\left\{\begin{array}{lr}0, & -\frac{1}{2}<x<0, \\ 1, & 0<x<\frac{1}{2}\end{array}\right.$
a) Expand it in a sine-cosine Fourier Series.
b) To what values will the Fourier series converge at $x=0, \pm \frac{1}{4}, \pm \frac{1}{2}$?
5.(17 pts) In your homework problem 7.5.2 you were given the periodic function on the interval $(-\pi, \pi)$ defined by $f(x)=\left\{\begin{array}{cc}0 & -\pi<x<0 \\ 1 & 0<x<\pi / 2 \\ 0 & \pi / 2<x<\pi\end{array}\right.$. You should have obtained the following result $f(x)=\frac{1}{4}+\frac{1}{\pi} \sum_{n \text { odd }}^{\infty} \frac{(-1)^{1+n} \cos (n x)}{n}+\frac{1}{\pi} \sum_{\text {nodd }}^{\infty} \frac{\sin (n x)}{n}+\frac{1}{\pi} \sum_{\text {nodd }}^{\infty} \frac{\sin (2 n x)}{n}$. Use Parseval's theorem to obtain the series $\sum_{\text {nodd }}^{\infty} \frac{1}{n^{2}}$.
6.(17 pts) a) Determine the Fourier transform of the function $f(x)=e^{-b|x|}$. Use the unsymmetric form of the transform.
b) Write $f(x)=\int_{-\infty}^{\infty} g(\alpha) e^{i \alpha x} d \alpha$ and determine the integral $\int_{0}^{\infty} \frac{\cos (\alpha)}{\alpha^{2}+b^{2}} d \alpha$.
c) Use Parseval's theorem for Fourier transforms to evaluate the integral $\int_{0}^{\infty} \frac{d \alpha}{\left(\alpha^{2}+b^{2}\right)^{2}}$.

