1. (17 pts) Consider the binomial series $(1+x)^{-3 / 2}=\sum_{n=0}^{\infty}\binom{-\frac{3}{2}}{n} x^{n}$. Evaluate the binomial coefficient $\binom{-\frac{3}{2}}{n}$ to obtain the general form for the series in terms of factorials, double
factorials, etc. Recall: $\binom{p}{0}=1 \quad\binom{p}{1}=p \quad\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$
2.(17 pts) Test the following complex series for convergence: $\sum_{n=0}^{\infty}\left(\frac{2+i}{3-4 i}\right)^{2 n}$.
3.(15 pts) Evaluate the following complex function: $\cos (\pi-2 i \ln 3)$.
4.(17 pts) Evaluate the following complex function: $\sin ^{-1}\left[\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^{12}\right]$.
5.(17 pts) Determine the roots of $i^{2 / 3}$. You can leave your results in polar form, but give a sketch (or plot) of your results.
6.(17 pts) Evaluate the sum $\sum_{n=0}^{\infty} x^{n} \cos (n x)$ for $0<x<1$.
