Read Chapter 7 - Sections 1 through 9.
Problems: 7.4.5, 7.4.13, 7.4.15, 7.5.7, 7.6.7, 7.6.14,

Phys 208 - Homework (HW 18) - SP13 Due Wednesday, March 20, 2013
Chapter 7 -- Read Sections 11 and 12
Chapter 8 - Read Section 11 (Dirac Delta Function)
Problems: \quad 7.7.9 (Just compare to the result for problem 7.5.9 on page 355. You do not need to calculate the sine-cosine series.), 7.7.13, 7.8.1 (Just expand in the complex exponential series and show that it is equivalent to the result for problem 7.5.1 on page 354 if $\ell=\pi$.), 7.11.5, 7.11.7, 7.11.9 (You do not need to work out the series for these 3 problems. Just use the results given in the book for them on pages 370 and 355 .)

Answers: 7.7.9 $f(x)=\frac{\pi}{2}-\frac{2}{\pi} \sum_{\substack{n=-\infty \\ n \text { odd }}}^{\infty} \frac{e^{i n x}}{n^{2}} \quad$ 7.8.1 $\quad f(x)=\frac{1}{2}+\frac{i}{\pi} \sum_{\substack{-\infty \\ n \text { odd }}}^{\infty} \frac{e^{i n \pi x / \ell}}{n}$

Phys 208 - Homework (HW 19) - SP13 Due Friday, March 22, 2013

Chapter 8 - Read Section 11 (Dirac Delta Function)

Problems: 7.12.3, 7.12.17, 7.12.21, 7.12.23, 7.12.24, 7.12.33

HW19.1 Use your result for problem 7.12.3 and Parseval's theorem to show that

$$
\int_{-\infty}^{\infty} \frac{[1-\cos (\alpha \pi)]^{2}}{\alpha^{2}} d \alpha=\pi^{2} .
$$

Answer: \quad 7.12.3 $\quad f(x)=\int_{-\infty}^{\infty} \frac{1-\cos (\alpha \pi)}{i \alpha \pi} e^{i \alpha \chi} d \alpha$

$$
\text { 7.12.17 } f_{s}(x)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1-\cos (\alpha \pi)}{\alpha} \sin (\alpha x) d \alpha \quad 7.12 .24 \text { (c) } g_{c}(\alpha)=\sqrt{\frac{\pi}{2}} e^{-|\alpha|}
$$

1. Note: Some properties of the delta function are given on page 456 of the book. Evaluate the following integrals:
а) $\int_{2}^{6}\left(3 x^{2}-2 x-1\right) \delta(x-3) d x$
b) $\int_{0}^{5} \cos x \delta(x-\pi) d x$
c) $\int_{0}^{3} x^{3} \delta(x+1) d x$
d) $\int_{-\infty}^{\infty} \ln (x+3) \delta(x+2) d x$
e) $\int_{-2}^{2}(2 x+3) \delta(3 x) d x$
f) $\int_{-1}^{1} 9 x^{2} \delta(3 x+1) d x$
