Phys 208 - Homework (HW01) - SP13 (Due Monday, January 28, 2013)

Read/Peruse Chapter 1, Sections 1 through 15.

Problems: $\quad 1.10 .10,1.10 .11,1.13 .2,1.13 .3,1.13 .4$

Phys 208 - Homework (HW02) - SP13 (Due Wednesday, January 30, 2013)
Problems: $\quad 1.13 .13,1.13 .19,1.15 .29,1.15 .33,1.16 .2,1.16 .13$
Answers: $\quad 1.16 .2 \quad d_{n}=\frac{L}{2 n}$

Phys 208 - Homework (HW03) - SP13 (Due Friday, February 1, 2013)
Read Chapter 2, Sections 1 through 9.
HW3.1 Blackbody Radiation: The energy per unit volume per unit of frequency is given by $\rho_{v} d v=\frac{8 \pi v^{2}}{c^{3}} E_{\text {avg }} d v$, where v is the frequency and c is the speed of light in a vacuum. Classically one finds $E_{\text {avg }}=k T$, where k is the Boltzmann constant and T is the absolute temperature. Planck assumed that the radiated energy was quantized in units of $h v$ so that $E_{n}=n h v$, where $n=0,1,2,3, \cdots$.

The average energy is defined as $E_{\text {avg }}=\frac{\sum_{n=0}^{\infty} E_{n} e^{-E_{n} / k T}}{\sum_{n=0}^{\infty} e^{-E_{n} / k T}}=k T \frac{\sum_{n=0}^{\infty} n \alpha e^{-n \alpha}}{\sum_{n=0}^{\infty} e^{-n \alpha}}$, where $\alpha=\frac{h v}{k T}$. Also note that $\frac{d e^{-n \alpha}}{d \alpha}=-n e^{-n \alpha}$, so that you can interchange the derivative and the sum in the numerator.

HW3.2 The energy per unit volume per unit of wavelength is given by $\rho_{\lambda} d \lambda=\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}$.
Define $x=\frac{h c}{\lambda k T}$ to obtain $g(x)=\frac{x^{5}}{e^{x}-1}$ so that $\rho_{\lambda}=$ (constant) $g(x)$. Show that the maximum value for x is given by the equation $x=5\left(1-e^{-x}\right)$. The solution is close to 5 , so make an expansion about 5. Set $x=5-\varepsilon$ and solve for x up to order ε^{2}. Show that $x=4.965$ and thus $\lambda_{\max } T=2.897 \times 10^{-3} \mathrm{~K}^{\circ} \cdot \mathrm{m}$. This is called Wien's Law for blackbody radiation.

HW3.3 The relativistic momentum is defined as $p=\frac{m v}{\sqrt{1-v^{2} / c^{2}}}$, where m is the mass of a particle, v its speed, and c is the speed of light. Thus the relativistic force is written as $F=\frac{d p}{d t}$. The work done on a particle is its kinetic energy if the particle starts from rest at time $t=0$. Use this fact to derive an expression for the relativistic kinetic energy K. Use the work-energy theorem to calculate $W=\Delta K=K=\int_{0}^{x} F d x$ if $K=0$ at $t=0$. Note that $v=d x / d t$, so that $K=\int_{0}^{t} v \frac{d p}{d t} d t$. Hint: Show that $v \frac{d p}{d t}=\frac{d}{d t}\left(\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}\right)$. Expand your result for $v / c \ll 1$ to show that it yields the classical result for kinetic energy.

