	Exam II	I Review		
$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2}$			$B = \frac{\mu_0 I}{2\pi r}$
$\mathcal{E} = -N \frac{d}{dt} \left[\int \vec{B} \cdot d\vec{A} \right]$		$\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \left[\int \vec{B} \cdot d\vec{A} \right]$		
$B = \mu_0 n I$	$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enc}} + \mu_0 \epsilon_0 \frac{d}{dt} \left[\int \vec{E} \cdot d\vec{A} \right]$			
$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$	$I = \langle S \rangle = \frac{P}{A} = c \langle u \rangle = \frac{1}{2} c \epsilon_0 E_{\max}^2 = \frac{1}{2} c \frac{B_{\max}^2}{\mu_0}$			
$\frac{F}{A} = \langle P_{\text{rad}} \rangle = \frac{I}{c} \text{ or}$	$\frac{2I}{c}$ $v = \lambda f$	$n = \frac{c}{v}$	n _r si	$\sin \theta_r = n_i \sin \theta_i$

Example: A long wire lies along the *x*-axis carrying a current I_0 in the positive *x* direction. A proton passes through the point (0, 3*a*, 0) with a constant velocity \vec{v} . Determine \vec{v} if the magnetic field at (0, *a*, 0) is 0 at the moment the proton passes through (0, 3*a*, 0).

