Exam I Review

Lectures 1-7

Forces, Fields, Energy and Potential			
$\vec{F} = k \frac{q_1 q_2}{r_1^2}$	$\frac{l_2}{2}\hat{r}_{12}$	$\vec{F} = q\vec{E}$	$ec{E} = k rac{q}{r^2} \hat{r}$
$\Delta U = -\int$	<i>F</i> ∙ ds		$\Delta V = -\int ec{E} \cdot dec{s}$
$F_x = -$	$\frac{\partial U}{\partial x}$		$E_x = -\frac{\partial V}{\partial x}$
$U = k \frac{q}{1}$	1 <u>92</u> 12	U = qV	$V = k \frac{q}{r}$

Forces	, Fields, Energy and Po Continuous Forms	otential
$\vec{F} = \int k \frac{dq_1 q_2}{r_{12}^2} \hat{r}_{12}$	$\vec{F} = q\vec{E}$	$\vec{E} = \int k \frac{dq}{r^2} \hat{r}$
$\Delta U = -\int \vec{F} \cdot d\vec{s}$		$\Delta V = -\int \vec{E} \cdot d\vec{s}$
$F_x = -\frac{\partial U}{\partial x}$		$E_x = -\frac{\partial V}{\partial x}$
$U = \int k \frac{dq_1q_2}{r_{12}}$	U = qV	$V = \int k \frac{dq}{r}$

Finding Equilibria for Charges Constrained to Line

Procedure:

- · Consider all possible regions
- · For each region, express location with a variable
- · Express forces in terms of variable
- Set total force on object to zero
- Solve for location
- Accept solution only if in selected region
- Determine if stable or unstable

Finding Equilibria for Charges Constrained to Line

Procedure:

- Determine if stable or unstable
 - o Consider small displacements from equilibrium
 - o If net force is towards equilibrium, then stable
 - o If net force is away from equilibrium, then unstable

Gauss's Law

Procedure:

- Divide into distinct regions
- Write out law, $\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\epsilon_0}$
- Sketch Gaussian surface
- Factor out *E* and substitute for Gaussian area
- Substitute for enclosed charge
- In non-conducting regions, solve for E and add direction
- In conducting regions, solve for surface charge

Gauss's Law

Procedure:

• Factor out E and substitute for Gaussian area

Areas: Spherical Symmetry $E(4\pi r^2) =$ Cylindrial Symmetry $E(2\pi rL) =$ Planar Symmetry E(2A) =

Finding Capacitance

- Procedure: Find \vec{E} using Gauss's Law $\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\epsilon_0}$
- Find V using $V = |\Delta V| = \left| \int \vec{E} \cdot d\vec{s} \right|$
- Find C using $C = \left| \frac{Q}{V} \right|$

Capacitors	s in Circuits
In Series	In Parallel
$C_T = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$	$C_T = C_1 + C_2$
$V_T = V_1 + V_2$	$V_T = V_1 = V_2$
$Q_T = Q_1 = Q_2$	$Q_T = Q_1 + Q_2$

In Series	In Parallel
$C_T = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$	$C_T = C_1 + C_2$
$V_T = V_1 + V_2$	$V_T = V_1 = V_2$
$Q_T = Q_1 = Q_2$	$Q_T = Q_1 + Q_2$

Capacitors in Circuits

Additional topics:

- What forces are there when two objects are brought near each other? Consider both charged and neutral and both conductors and insulators.
- What forces are on a charged object in an electric field?
 How does the force, field, energy or potential change as an object is moved from one location to another in the presence of a field or other charges?