| Wednesday, December 12, 10:00 am - 12:00 pm |            |            |
|---------------------------------------------|------------|------------|
| Instructor                                  | Section(s) | Exam Room  |
| Le                                          | A, C       | Schrenk G3 |
| Madison                                     | L          | St. Pat's  |
|                                             | N          | BCH 125    |
| Musser                                      | E, H       | Bert B10   |
| Parris                                      | M, Q       | HSS G5     |
| Peacher                                     | F, J       | BCH 125    |
| Waddill                                     | B, D, P, R | St. Pat's  |
| Wilemski                                    | G, K       | BCH 120    |

#### **End Material Test**

## All multiple choice questions

- 7 Multiple Questions worth 6 points each
- 1 Free Question worth 8 points (already in grade)

# Topics from End Material including

- Concave and convex mirrors
- · Lenses and optical instruments
- Double slit interference
- Single slit interference
- Diffraction
- Thin films

### Final Exam

### All problems with topics from entire course

- 40 points from topics that could have been on Exam I
- 40 points from topics that could have been on Exam II
- 40 points from topics that could have been on Exam III
- · 80 points from End Material















Example: A proton is accelerated from rest through a potential difference of  $\Delta V$ . The proton then enters a uniform magnetic field perpendicular to its velocity. (a) Determine the speed of the proton when it enters the magnetic field. (b) The proton trajectory has a diameter *D* in the field. Determine the magnitude of the magnetic field and the period of the proton's motion.

Example: A small generator consists of a flat square coil of 120 turns and sides of 1.60 cm. The coil rotates in a uniform magnetic field of 0.75mT. (a) Determine the time dependence of the magnetic flux. (b) Determine the angular speed of the coil if the maximum emf is 24mV.







Example: A rod of radius *a* has a uniform charge per length  $\lambda$ . A neutral conducting cylindrical shell of inner radius b and outer radius c is coaxial with the charged rod. (a) Determine the electric field for all regions with r > a. (b) Determine any induced charges. (c) Determine the potential difference between the rod and the cylindrical shell.