Example: A thin silver rectangular plate of dimensions $a \times b$ (a < b) is in a region of uniform magnetic field $\vec{B} = B_0 \hat{k}$. The plate is to be moved with $\vec{v} = v_0 \hat{i}$, $\vec{v} = v_0 \hat{j}$ or $\vec{v} = v_0 \hat{k}$. (a) Which direction yields the greatest \mathcal{E} in the plate? (b) What is the \mathcal{E} induced in the plate? (c) Identify the location and sign of any induced charges in the plate.

Example: A long wire lies along the *x*-axis carrying a current I_0 in the positive *x* direction. A proton passes through the point (0, 3*a*, 0) with a constant velocity \vec{v} . Determine \vec{v} if the magnetic field at (0, *a*, 0) is 0 at the moment the proton passes through (0, 3*a*, 0).

Example: The loop carries a current I_0 . Determine the magnetic field at point *P*.

Example: A conducting rod of mass m and length L is attached to a U-shaped conductor such that it can slide without friction. The apparatus with the rod has resistance R and is located in a uniform magnetic field \vec{B} . Determine the terminal velocity for the rod.

Example: A wire carries a current I_0 . Determine the magnetic field everywhere.

Example: A transmitter emits a 5kW signal towards a circular antenna of radius 0.20m that is located 20km away. The signal is uniformly distributed within a narrow cone such that it passes through $\frac{1}{64}$ the area of a sphere centered on the transmitter.

Example: $P_0 = 5kW$, $x_A = 20km$, $R_A = 0.20m$ and $A_{signal} = \frac{1}{64}A_{sphere}$. (a) Determine the energy density of the signal at the location of the antenna.

Example: $P_0 = 5kW$, $x_A = 20km$, $R_A = 0.20m$ and $A_{signal} = \frac{1}{64}A_{sphere}$. (b) Determine force on the antenna.

Example: $P_0 = 5kW$, $x_A = 20km$, $R_A = 0.20m$ and $A_{signal} = \frac{1}{64}A_{sphere}$. (c) How would the force be different if the signal were reflected?

Example: $P_0 = 5kW$, $x_A = 20km$, $R_A = 0.20m$ and $A_{signal} = \frac{1}{64}A_{sphere}$. (d) Determine the amplitude of the magnetic field at the location of the antenna.

