Phase Difference

Consider a light wave traveling in the z-direction.

$$\begin{split} \vec{E}_1 &= E_{10} \sin(kz - \omega t + \delta_1) \,\hat{\imath} \\ \vec{B}_1 &= B_{10} \sin(kz - \omega t + \delta_1) \hat{\jmath} \end{split}$$

Consider a second light wave of the same wavelength also traveling in the z-direction.

$$\vec{E}_2 = E_{20} \sin(kz - \omega t + \delta_2) \hat{\imath}$$

$$\vec{B}_2 = B_{20} \sin(kz - \omega t + \delta_2) \hat{\jmath}$$

Any interference is determined by the phase difference $\phi=\delta_2-\delta_1$ and the relative intensities.

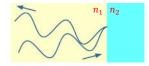
Phase Difference $\phi = \delta_2 - \delta_1$

For waves completely in phase $\phi=(2m)\pi$ I will refer to this as a phase difference of 0

For waves completely out of phase $\phi=(2m+1)\pi$ I will refer to this as a phase difference of π

Phase Changes

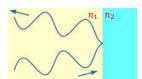
For waves originally in phase, consider effects that may change phase.


Path length difference

- $\Delta L = m\lambda$ \Rightarrow phase change of 0
- $\Delta L = \left(m + \frac{1}{2}\right)\lambda$ \Rightarrow phase change of π

Phase Changes due to Reflection

Waves traveling in a medium with index of refraction n_1 reflect off a surface of a medium with index of refraction n_2 .


If $n_1 > n_2$ there will be no change of phase

Phase Changes due to Reflection

Waves traveling in a medium with index of refraction n_1 reflect off a surface of a medium with index of refraction n_2 .

If $n_1 < n_2$ there will be a change of phase of π

Phase Difference

For waves originally in phase, consider effects that may change phase.

Path length difference

- $\Delta L = m\lambda$ phase change of 0
- $\Delta L = \left(m + \frac{1}{2}\right)\lambda$ phase change of π

Reflection

- n₁ > n₂
 n₁ < n₂ phase change of 0
- phase change of π

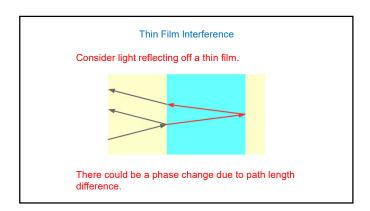
Phase Difference

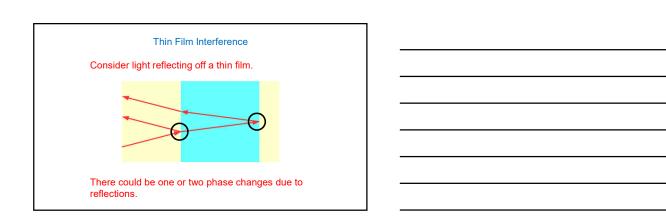
For waves originally in phase, consider effects that may change phase.

Path length difference

- $\Delta L = m\lambda$ phase change of 0
- $\Delta L = \left(m + \frac{1}{2}\right)\lambda$ phase change of π

Reflection


- $n_1 > n_2$
- phase change of 0 phase change of π $n_1 < n_2$


"Low to high, change is π ." (D.M. Sparlin) 'High to low, change is NO." (Anonymous S&T Student)

Thin Film Interference Consider light reflecting off a thin film. Some light will reflect off the first surface.

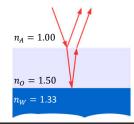
Thin Film Interference Consider light reflecting off a thin film. Some light will reflect off the second surface.

Thin Film Interference	
Consider light reflecting off a thin film.	
*	
There will be interference between the reflected	
rays.	

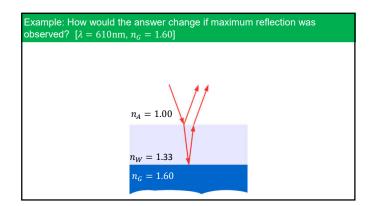
Thin Film Interference

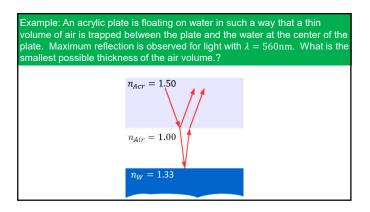
Determining interference patterns can be an exercise in counting the number of phase changes of π

Thin Film Interference

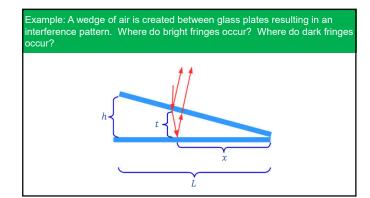

Determining interference patterns can be an exercise in counting the number of phase changes of π .


Remember: λ depends on the index of refraction.


$$n = \frac{c}{v} = \frac{\lambda f}{\lambda_n f} = \frac{\lambda}{\lambda_n}$$


$$\lambda_n = \frac{\lambda}{n}$$

Example: A layer of oil $(n_0=1.50)$ floats on top of water $(n_W=1.33)$. It is observed that $610\mathrm{nm}$ light shining normally on the oil is minimally reflected. What is smallest possible thickness of the oil film?



(Angle is greatly exaggerated and thickness of glass is not to scale.)

Example: How does this question change if the plates are in water so that the wedge is made of water?	
h $\left\{\begin{array}{c} t \\ \end{array}\right\}$	
X	
Why do we not consider reflections off the other glass surfaces?	
	-