

Diffraction Gratings

Any set of evenly spaced lines that act as light sources in phase may be used to produce diffraction pattern.

Diffraction Gratings

Any set of evenly spaced lines that act as light sources in phase may be used to produce diffraction pattern.

A common device is a transparent plate with evenly spaced lines scribed on the plate, usually characterized by lines per distance $\left(\frac{1}{d}\right)$ rather than by distance per line (*d*). This is a diffraction grating.

For example, a grating with $400 \frac{\text{lines}}{mm}$ has a "slit" separation $d = \frac{1}{400} mm = 2.5 \mu m.$

Example: the wavelengths of visible light are from approximately 400 nm (violet) to 700 nm (red). Find the angular width of the first-order visible spectrum produced by a plane grating with 600 slits per millimeter when white light falls normally on the grating.

If the minimum wavelength difference that can be resolved by a diffraction grating is given by $\Delta\lambda$

then the resolving power is $R = \frac{\lambda}{\Delta \lambda} \label{eq:R}$

where λ is the average of the two wavelengths.

It can be shown that

R = Nm

where ${\it N}$ is the number of slits and ${\it m}$ refers to the ${\it m}{\rm th}{\rm -order}$ maxima.

X-ray Diffraction

A grid of regularly spaced objects may also be used to produce a diffraction pattern.

- X-ray diffraction uses atoms in a crystal to create a diffraction pattern.
- Practitioners work backwards from the pattern to deduce the arrangement of atoms in the crystal. Multiple patterns arise from the regular spacing along different
- lines in the crystal.

5

Intensity	
Maximum intensity interference (bright	corresponds to constructive fringes).
Double slit Phase differen	ce: Intensity:
$\phi = 2\pi \left(\frac{1}{2}\right)$	$I = I_0 \cos^2\left(\frac{\phi}{2}\right)$
<mark>Single slit</mark> Phase differen	ce: Intensity:
$\beta = \frac{2\pi}{\lambda}as$	$\sin\theta \qquad \qquad I = I_0 \left[\frac{\sin(\beta/2)}{\beta/2}\right]^2$