

Object is source of light. Every point of the object is a source of light.

Object and image distances are positive on side with light rays and negative on opposite side.

Object distance = - Image Distance

Plane Mirror Object Image Plane mirrors produce images that are upright, virtual, the same size as the object and reversed front-to-back.

Example: How tall of a plane mirror is required for a person to see their full image in the mirror from their feet to the top of their head?

Example: How tall of a plane mirror is required for a person to see the full image of a distant object?

Concave Spherical Mirrors

Concave Spherical Mirrors

f = R/2, is the "focus" or "focal point"

Concave Spherical Mirrors

Object and image distances are positive on side with light rays and negative on opposite side.

Graphical Determination of Image Location Draw principle rays

• From object to mirror, parallel to principle axis - From there (mirror) through focus

Graphical Determination of Image Location Draw principle rays

• From object to mirror, through focus -From there (mirror) parallel to principle axis

Graphical Determination of Image Location Draw principle rays

• From object to mirror, through center - From there (mirror) through center

Draw principle rays

- From object to mirror, parallel to principle axis -From there (mirror) through focus
- From object to mirror, through focus -
- From there (mirror) parallel to principle axis
- From object to mirror, through center -From there (mirror) through center

Calculation of Image Location

Calculation of Image Location

Example: a dime (height is 1.8 cm) is placed 100 cm away from a concave mirror. The image height is 0.9 cm and the image is inverted. What is the focal length of the mirror.

Convex Spherical Mirrors

Same rules with R < 0 and f < 0.

Convex Spherical Mirrors

Image is virtual, upright, and smaller than object.

Example: a convex rearview car mirror has a radius of curvature of 40 cm. Determine the location of the image and its magnification for an object 10 m from the mirror.

Additional Examples

An additional file is provided on the lecture web page including each possible type of image due to a concave spherical mirror.