Gauss's Law: $\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}$

Gauss's Law for B: $\oint \vec{B} \cdot d\vec{A} = 0$

Faraday's Law: $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$

Ampere-Maxwell Law: $\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc} + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$

Changing magnetic flux produces electric field.

Left side is	Right side is
the field that	the source.
is being	$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enc}} + \mu_0 \xi_0 \frac{d\Phi_E}{dt}$
produced.	at at

Changing electric flux produces magnetic field.

Self-Propagating Fields

Changing magnetic flux produces electric field.

Changing electric flux produces magnetic field.

Self-Propagating Fields

Self-Propagating Fields

Equations describing waves.

Self-Propagating Fields – Electromagnetic Waves

Solutions:

$$\vec{E} = E_{\max} \sin(kx - \omega t) \hat{j}$$
$$\vec{B} = B_{\max} \sin(kx - \omega t) \hat{k}$$

Solutions:

$$\vec{E} = E_{\max} \sin(kx - \omega t) \hat{j}$$

$$\vec{B} = B_{\max} \sin(kx - \omega t) \hat{k}$$

Wavelength, λ , distance for complete oscillation: $k\lambda = 2\pi$ Wave number, $k = \frac{2\pi}{\lambda}$

Period, *T*, time for complete oscillation: $\omega T = 2\pi$ Angular frequency, $\omega = \frac{2\pi}{T}$

Solutions:

$$\vec{E} = E_{\max} \sin(kx - \omega t) \hat{j}$$

$$\vec{B} = B_{\max} \sin(kx - \omega t) \hat{k}$$

$$k = \frac{2\pi}{\lambda} \qquad \omega = \frac{2\pi}{T}$$

Frequency, *f*, oscillations per time:

$$f = \frac{1}{\frac{T}{\omega}}$$
$$f = \frac{1}{\frac{2\pi}{2\pi}}$$

Solutions:

$$\vec{E} = E_{\max} \sin(kx - \omega t) \hat{j}$$
$$\vec{B} = B_{\max} \sin(kx - \omega t) \hat{k}$$
$$\sum^{2\pi} e^{2\pi} e^{-\omega t} \hat{k}$$

$$k = \frac{2\pi}{\lambda}$$
 $\omega = \frac{2\pi}{T}$ $f = \frac{\omega}{2\pi}$

Wave speed, *c*, distance per time: $c = \lambda f = \frac{\omega}{k} = \frac{E_{\text{max}}}{B_{\text{max}}} = \frac{E}{B} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$

Solutions:

$$\vec{E} = E_{\max} \sin(kx - \omega t) \hat{j}$$
$$\vec{B} = B_{\max} \sin(kx - \omega t) \hat{k}$$
$$k = \frac{2\pi}{\lambda} \qquad \omega = \frac{2\pi}{T} \qquad f = \frac{\omega}{2\pi}$$

Wave speed, *c*, distance per time: $c = \lambda f = \frac{\omega}{k} = \frac{E_{\text{max}}}{B_{\text{max}}} = \frac{E}{B} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$

In material, the speed of electromagnetic waves (light) may be slower. $v = \frac{1}{\sqrt{\mu\epsilon}}$

Poynting Vector, \vec{S}

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

Poynting Vector, \vec{S}

$$\vec{S} = \frac{1}{\mu_0}\vec{E} \times \vec{B}$$

- Energy current density
- (Energy per area) per time
- Power per area
- Units are $\left[\frac{J}{m^2 s}\right] = \left[\frac{W}{m^2}\right]$.
- Direction of \vec{S} is direction of wave propagation.

Poynting Vector, \vec{S}

$$\vec{S} = \frac{1}{\mu_0}\vec{E} \times \vec{B}$$

- Energy current density
- (Energy per area) per time
- Power per area
- Units are $\left[\frac{J}{m^2 s}\right] = \left[\frac{W}{m^2}\right]$.
- Direction of \vec{S} is direction of wave propagation.

There is energy in a region with electric and magnetic fields. (Recall: energy stored in a capacitor may be interpreted as being stored in the electric field.)

Poynting Vector, \vec{S} $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$

The average of \vec{S} over an integer number of cycles is called wave intensity, *I*.

$$I = \langle S \rangle = \left\{ \frac{1}{\mu_0} E_{\max} B_{\max} \sin^2(kx - \omega t) \right\}$$
$$I = \frac{E_{\max} B_{\max}}{2\mu_0} = \frac{1}{2} c\epsilon_0 E_{\max}^2 = \frac{1}{2} \frac{c B_{\max}^2}{\mu_0}$$

Energy Density

$$\langle u \rangle \equiv \frac{U}{V} = \frac{U}{Ad} = \frac{U}{A(ct)} = \frac{I}{c}$$
$$\langle u \rangle = \frac{\epsilon_0 E_{\text{max}}^2}{2} = \frac{B_{\text{max}}^2}{2\mu_0}$$

Example: A radio station broadcasts with a total average power of 50kW. (a) Determine the electric and magnetic fields measured at a distance of 20km from the transmitter.

Example: A radio station broadcasts with a total average power of 50kW. (a) Determine the electric and magnetic fields measured at a distance of 20km from the transmitter. (b) How much energy is absorbed in a day by an antenna of area, 0.25 m^2 facing the transmitter 20km from the transmitter?

Radiation Pressure

IF radiation is completely absorbed,

$$\langle P_{\text{rad}} \rangle = \frac{F}{A} = \frac{U}{V} = \langle u \rangle = \frac{I}{c}$$

IF radiation is completely reflected, $\langle P_{rad} \rangle = \frac{2I}{c}$

Why is there a difference of a factor of 2?

Example: A radio station broadcasts with a total average power of 50kW. (a) Determine the electric and magnetic fields measured at a distance of 20km from the transmitter. (b) How much energy is absorbed in a day by an antenna of area, 0.25 m² facing the transmitter 20km from the transmitter? (c) Determine the force exerted on the antenna by the electromagnetic wave.