## Induced $\mathcal{E}$

- Units of potential difference
- Not a potential difference between two locations
  Direction determined by Lenz's Law

## Induced E

Induced  $\ensuremath{\mathcal{E}}$  in a conducting loop results in current that produces magnetic field.

Direction of induced current is such that induced field opposes direction of change in magnetic flux.

If  $\frac{d\Phi_B}{dt} > 0$ , then  $\Phi_{Induced}$  is in the opposite direction from  $\Phi_B$ 

If  $\frac{d\Phi_B}{dt} < 0$ , then  $\Phi_{Induced}$  is in the same direction as  $\Phi_B$ 





















