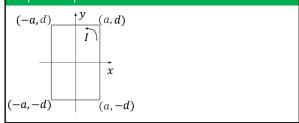
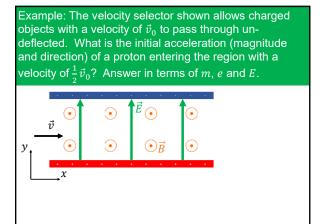
Exam II Review

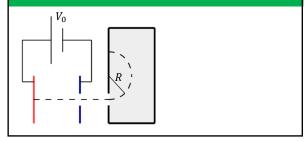
- Dielectrics
- Resistivity
- Resistance
- · Circuits
- RC Circuits
- Magnetism
- Lorentz Forces
- Magnetic Dipoles

Example: An circular air-filled parallel plate capacitor is connected to a battery with emf, \mathcal{E} . The capacitor has a radius, R, and plate separation, d. (a) Determine the charge on the capacitor and the energy stored in the capacitor.

Example: An circular air-filled parallel plate capacitor is connected to a battery with emf, \mathcal{E} . The capacitor has a radius, R, and plate separation, d. (a) Determine the charge on the capacitor and the energy stored in the capacitor. (b) The gap is filled with an insulator with dielectric constant, κ . Determine the charge on the capacitor and the energy stored in the capacitor. [Still connected to battery.]


Example: A circuit of Nichrome wire normally carries a current, 2A, at room temperature, 20°C. The circuit is cooled to -30°C. Determine the current through the circuit at -30°C. $\rho_N = 1 \times 10^{-6} \Omega \text{m}$, $\alpha_N = 4 \times 10^{-4}$ /°C.


Example: The capacitors in the given circuit are initially uncharged. The battery is connected at t=0s. (a) Determine the time required to reach 86.5% of full charge on the capacitors. (b) What is the potential difference across the resistors at the time found in part (a)? $[\ln(0.135) = -2.00]$


Example: For the given circuit, determine R_T and I_5 . $R_2 = 420\Omega$ $R_1 = 20\Omega$ $R_3 = 70\Omega$ $R_4 = 50\Omega$ $R_5 = 190\Omega$

Example: A rectangular conducting loop lies in the xy-plane with corners at (x,y) coordinates (-a,-d), (-a,d), (a,-d) and (a,d). The magnetic field in the region is $\vec{B}=(b_1x+b_2y)\hat{k}$. A current, I, flows counterclockwise in the loop, as illustrated. Determine the net force and net torque on the loop. a, d, b_1 and b_2 are positive quantities.

Example: Alpha particles $(m_{\alpha}=4m_{p},\,q_{\alpha}=2e)$ are accelerated through a potential difference, V_{0} , and then pass through a magnetic field perpendicular to their velocity. What magnetic field (magnitude and direction) should be used to produce a radius of curvature, R, in the direction shown?

Example: A galvanometer has a square loop of 400 turns with sides of 1cm. A current of 2.0A causes a deflection of 30°. At this deflection, the restoring spring provides a torque, $\tau=1.2\times10^{-4} \rm Nm.$ Assuming the magnetic field in the region of the loop is uniform, what is magnitude of the field?

