Sources of Magnetic Field
Moving charges produce magnetic fields.
$ec{B}=rac{\mu_0}{4\pi}rac{qec{v} imes\dot{r}}{r^2}$

Sources of Magnetic Field

Moving charges produce magnetic fields.

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{n}}{r^2}$$

Sources of Magnetic Field

Moving charges produce magnetic fields.

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^2}$$

	_		
Example: A proton is moving along the x -axis with a velocity $\vec{v}_1 = +v_0\hat{\iota}$. a) Determine the magnetic field at $(0, a, 0)$ at the moment the proton passes through the origin.	_		
b) Determine the force on a second proton moving through the point $(0, a, 0)$ with a velocity $\vec{v}_2 = -v_0\hat{\imath}$ at the moment the first proton passes through the origin.	_		
	_		
	_		
	_		
	_		
	' –		
	_		
Example: A proton is moving along the x -axis with a velocity $\vec{v}_1 = +v_0\hat{\iota}$. a) Determine the magnetic field at $(0,a,0)$ at the moment the proton passes through	_		
the origin. b) Determine the force on a second proton moving through the point $(0, a, 0)$ with a velocity $\vec{v}_2 = -v_0\hat{\imath}$ at the moment the first proton passes through the origin.			
7 2 30	_		
	_		
	-		
It is an interesting exercise to (1) compare \vec{F}_{12} and \vec{F}_{21} and find that Newton's Third Law applies and (2) repeat for $\vec{v}_2 = -\nu_0\hat{j}$, comparing \vec{F}_{12} and \vec{F}_{21} . It will <i>appear</i> to be a contradiction of Newton's Third Law.	_		