

1

RC Circuits
$\mathcal{E} - \frac{Q}{C} - \frac{dQ}{dt}R = 0$
$\mathcal{E} - \frac{Q}{C} = \frac{dQ}{dt}R$
$\frac{\mathcal{E}C - Q}{RC} = \frac{dQ}{dt}$
$\frac{dt}{RC} = \frac{dQ}{\mathcal{E}C - Q}$

$$\frac{RC \text{ Circuits}}{\frac{dt}{RC} = \frac{dQ}{\varepsilon C - Q}}$$
$$\int_{0}^{t} \frac{dt}{RC} = \int_{0}^{Q} \frac{dQ}{\varepsilon C - Q}$$
$$\frac{t}{RC} = -\ln[\varepsilon C - Q]_{0}^{Q}$$
$$-\frac{t}{RC} = \ln\left(\frac{\varepsilon C - Q}{\varepsilon C}\right)$$

RC Circuits

$$-\frac{t}{RC} = \ln\left(\frac{\mathcal{E}C - Q}{\mathcal{E}C}\right)$$

$$e^{-\frac{t}{RC}} = \frac{\mathcal{E}C - Q}{\mathcal{E}C}$$

$$\mathcal{E}Ce^{-\frac{t}{RC}} = \mathcal{E}C - Q$$

$$Q = \mathcal{E}C\left(1 - e^{-\frac{t}{RC}}\right)$$

RC Circuits
$-rac{t}{RC} = \ln\left(rac{\mathcal{E}C - Q}{\mathcal{E}C} ight)$
$e^{-rac{t}{RC}}=rac{\mathcal{E}C-Q}{\mathcal{E}C}$
$\mathcal{E}Ce^{-rac{t}{RC}}=\mathcal{E}C-Q$
$Q = \mathcal{E}C\left(1 - e^{-\frac{t}{RC}}\right)$
$Q = Q_f \left(1 - e^{-\frac{t}{RC}} \right)$

RC Circuits

 $Q = Q_f \left(1 - e^{-\frac{t}{\tau}}\right)$

Charging a capacitorCharge on capacitor

Charging Capacitor

Time

 $(\tau \equiv RC)$

Charge

Example: An 8μ F capacitor is connected in series with a 50Ω resistor and a 60V battery. (a) When does the capacitor become fully charged? (b) What is the charge on the capacitor when it is fully charged?

Example: An 8μ F capacitor is connected in series with a 50Ω resistor and a 60V battery. (a) When does the capacitor become fully charged? (b) What is the charge on the capacitor when it is fully charged? (c) When does the capacitor hold a third of its ultimate full charge? (d) What is the current in the resistor when the capacitor holds a third of its ultimate full charge?