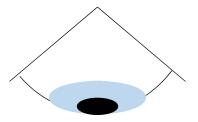
From Course Handbook:

Regrade policy. Requests for regrades must be submitted no later than the end of the second recitation meeting after the general return of the graded material, ...

$$I_{\text{ave}} = \frac{\Delta Q}{\Delta t}$$



(Counting charge that passes in a given time.)

Average Current: $I_{ave} = \frac{\Delta Q}{\Delta t}$

Positive current refers to flow of positive charges. If moving charges are negative (electrons), the current is in the opposite "direction".

Average Current: $I_{\text{ave}} = \frac{\Delta Q}{\Delta t}$

It is odd to speak of direction associated with current. Current is a scalar, but it does have a sign.

Average Current: $I_{\text{ave}} = \frac{\Delta Q}{\Delta t}$

Instantaneous Current:

$$I = \frac{dQ}{dt}$$

Unit of current is ampere (A) or amp. $1A = \frac{1C}{1S}$

Typical Currents:

- 100W light bulb
- Automobile starter motor
- Electronics

1A 200A nA - mA

Current and Current Density

The current in a wire is the sum of all the charge per time passing through a cross-section of the wire.

$$Current = \frac{charge}{(area)(time)}(area)$$

$$I = \int \vec{J} \cdot d\vec{A}$$

$$\vec{j}$$
 is current density.

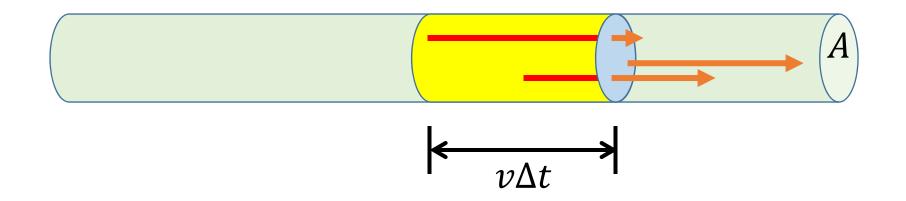
Current and Current Density

$$I = \int \vec{J} \cdot d\vec{A}$$

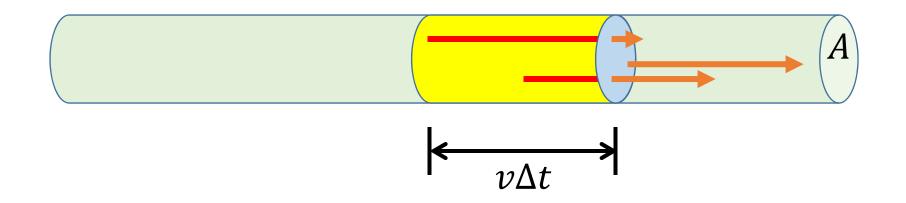
In many applications, \vec{J} is uniform and parallel to $d\vec{A}$.

$$I = \int \vec{J} \cdot d\vec{A} = J \int dA = JA$$

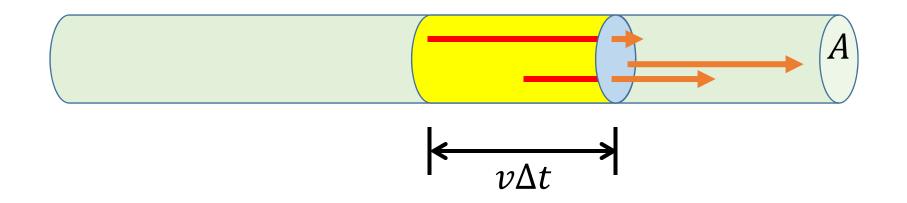
$$J = \frac{I}{A}$$



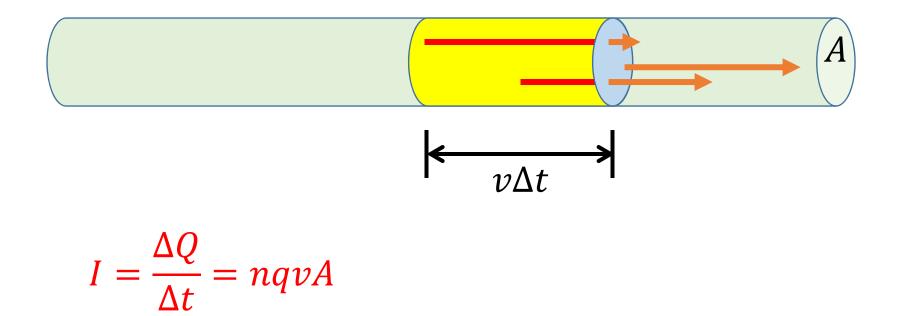
• Charges passing a given point in time, Δt , are those initially in a volume, $(\nu \Delta t)A$.



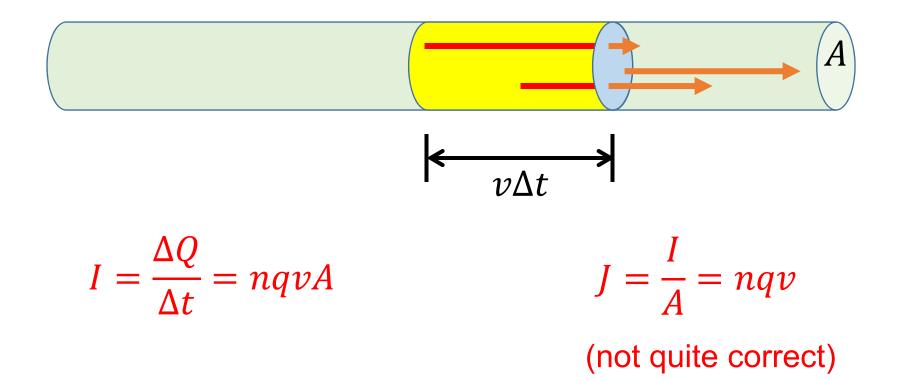
- Charges passing a given point in time, Δt , are those initially in a volume, $(v\Delta t)A$.
- The number of passing charges depends on the charge density, n. $N = n(v\Delta tA)$



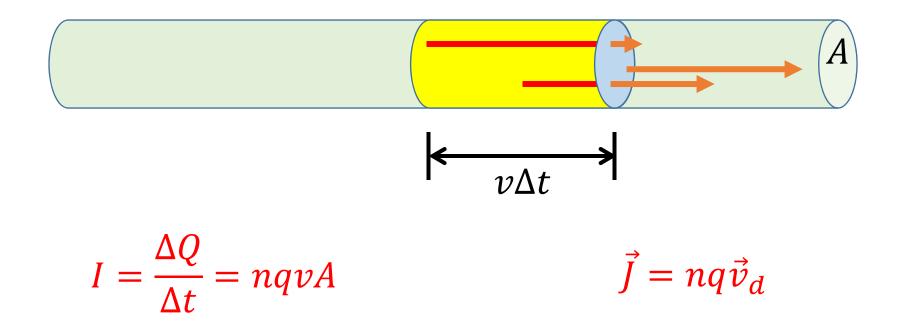
- Charges passing a given point in time, Δt, are those initially in a volume, (vΔt)A.
- The number of passing charges depends on the charge density, n. $N = n(v\Delta tA)$
- The amount of passing charge depends on the charge per carrier, q. $\Delta Q = q(nv\Delta tA)$



• The amount of passing charge depends on the charge per carrier,
$$q$$
. $\Delta Q = q(nv\Delta tA)$



Current Density Corrected



 \vec{v}_d is the average velocity, called drift velocity.

Current Density Corrected

 $\vec{J} = nq\vec{v}_d$

Some free electron densities:

- Silver $n = 5.86 \times 10^{28} / \text{m}^3$
- Gold $n = 5.90 \times 10^{28} \,/\mathrm{m^3}$
- Copper $n = 8.47 \times 10^{28} / \text{m}^3$
- Aluminum $n = 18.1 \times 10^{28} / m^3$

Example: 12-guage copper wire (common in home wiring) has a cross-sectional area of $3.31 \times 10^{-6} \text{m}^2$ and carries a current of 10A. Determine the drift speed of the electrons. [Free electron density in copper is $8.47 \times 10^{28} \text{m}^3$.]

Ohm's Law

Current caused by electric field in conductor

Amount of current depends on

- Strength of field
- How conductive the conductor is

 $\vec{J} = \sigma \vec{E}$

 σ is electrical conductivity

Ohm's Law

 $\vec{J} = \sigma \vec{E}$

 σ is electrical conductivity

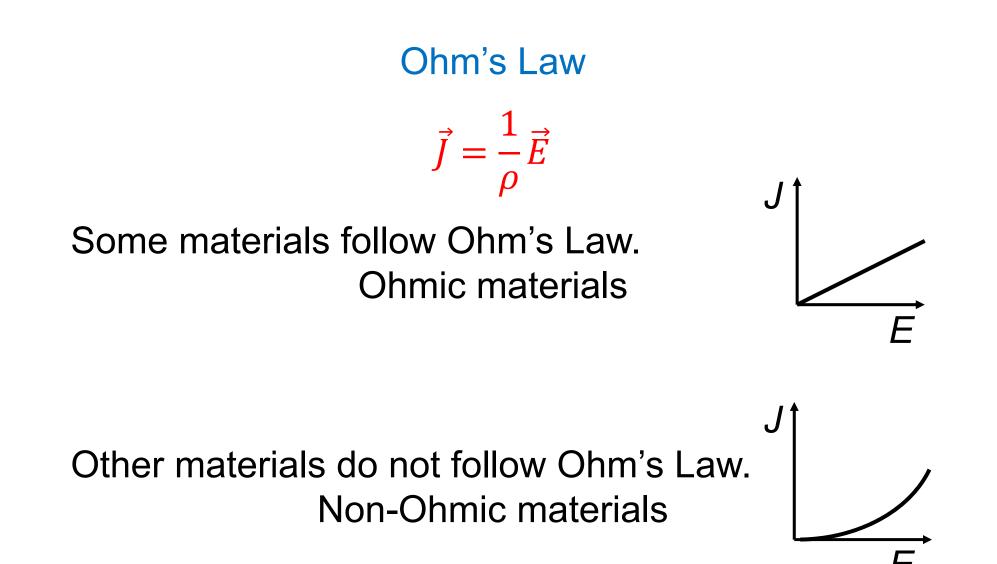
Alternatively written as

$$\vec{J} = \frac{1}{\rho}\vec{E}$$

ρ is electrical resistivity

Either version may be referred to as Ohm's Law

(In this context, σ and ρ are NOT charge densities.)



(Ohm's Law is not a Law of Nature.)

Example: An 8m long 12-guage copper wire (A = 3.31 × 10⁻⁶m²) carries a current of 10A when connected across a potential difference of 0.406V.
a) Determine the current density in the wire.
b) Determine the electric field in the wire.
c) Determine the resistivity of the wire.

Ohm's Law $\vec{J} = \frac{1}{\rho}\vec{E}$

Resistivity depends on temperature.

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

 α is the temperature coefficient and ρ_0 is the resistivity at T_0 .

Example: A wire is connected across a constant potential difference. It is noted that as the wire heats up from 20°C to 50°C, the current drops from 0.500A to 0.443A. Determine the temperature coefficient of the material.

Material	Conductivity (× $10^7 / \Omega m$)	Resistivity (× 10 ⁻⁸ Ωm)	Temperature Coefficient (/°C)
Aluminum	3.77	2.65	0.00429
Gold	4.1	2.44	0.0034
Copper	5.95	1.68	0.00386
Silver	6.29	1.59	0.0038

Silicon*	$\frac{1.56}{\times 10^{-3} / \Omega m}$	<mark>6.4</mark> × 10 ² Ωm	-0.075 /°C
----------	--	--	------------

*Silicon values depend strongly on impurities.

Microscopic vs. Macroscopic View

Microscopic

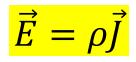
- Material
- Resistivity
- Current Density

Macroscopic

- Device
- Resistance
- Current

Connections

$$J = \frac{I}{A}$$



$$V = IR$$

$$R = \rho \frac{L}{A}$$

Resistance

$$R = \rho \frac{L}{A}$$

Resistance

- Proportional to length
- Inversely proportional to area
- Unit is Ohm (Ω)

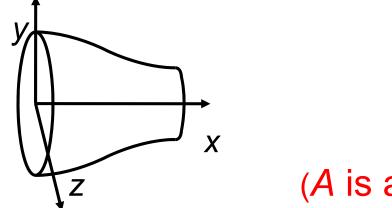
Applications: Jumper cables and holiday lights.

Resistance

Resistance depends on the material (resistivity) and the geometry of the device.

$$R = \rho \frac{L}{A}$$

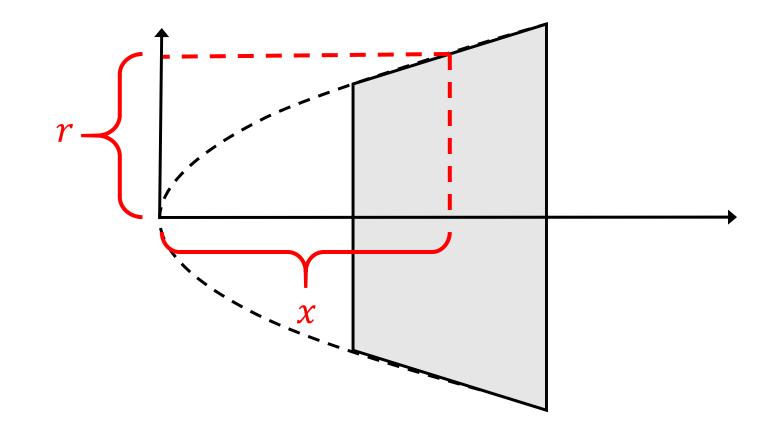
Integrate if the cross-section is not uniform.



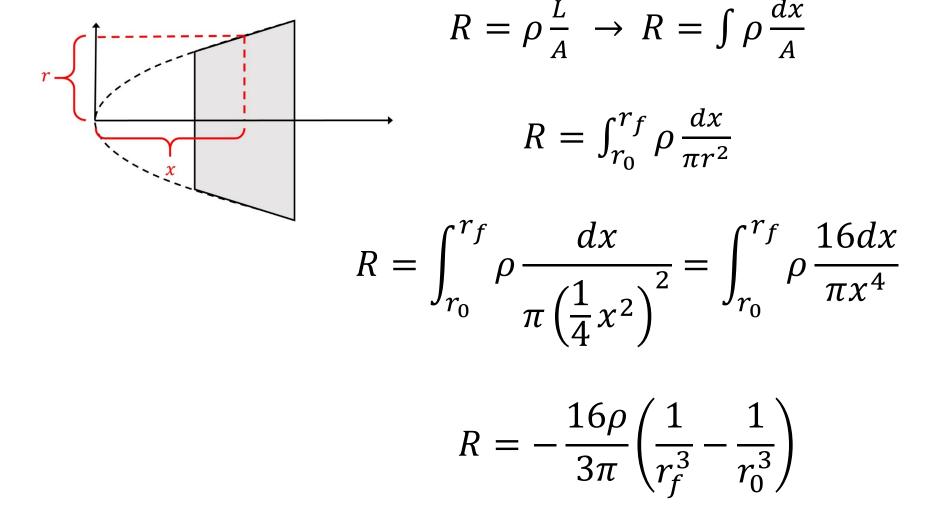
$$R = \int_0^L \rho \, \frac{dx}{A}$$

(A is a function of x.)

Example: The radius of a conductor is given by $r = \frac{1}{4}x^2$ between x = 2mm and x = 4mm. Determine the resistance of the conductor for a current flowing in the *x*direction.

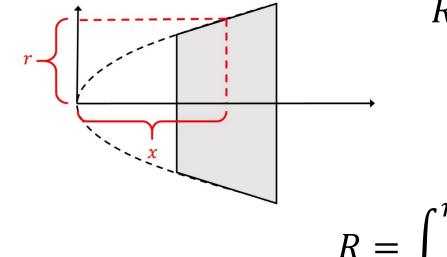


Example: The radius of a conductor is given by $r = \frac{1}{4}x^2$ between x = 2mm and x = 4mm. Determine the resistance of the conductor for a current flowing in the *x*direction.



Example: The radius of a conductor is given by $r = \frac{1}{4}x^2$ between x = 2mm and x = 4mm. Determine the resistance of the conductor for a current flowing in the *x*direction.

I.



$$R = \rho \frac{d}{A} \rightarrow R = \int \rho \frac{dx}{A}$$
$$R = \int_{r_0}^{r_f} \rho \frac{dx}{\pi r^2}$$
$$= \int_{r_0}^{r_f} \rho \frac{dx}{\pi \left(\frac{1}{4}x^2\right)^2} = \int_{r_0}^{r_f} \rho \frac{16dx}{\pi x^4}$$

 $d\gamma$

Be careful to enter limits in meters.

$$R = -\frac{16\rho}{3\pi} \left(\frac{1}{r_f^3} - \frac{1}{r_0^3} \right)$$