Ohm's Law

Current caused by electric field in conductor

Amount of current depends on

- Strength of field
- How conductive the conductor is

$$\vec{J} = \sigma \vec{E}$$

 $\boldsymbol{\sigma}$ is electrical conductivity

Ohm's Law

$$\vec{J} = \sigma \vec{E}$$

 σ is electrical conductivity

Alternatively written as

$$\vec{J} = \frac{1}{2}\vec{E}$$

 $\boldsymbol{\rho}$ is electrical resistivity

Either version may be referred to as Ohm's Law

(In this context, σ and ρ are NOT charge densities.)

Ohm's Law

$$\vec{J} = \frac{1}{2} \vec{E}$$

Some materials follow Ohm's Law. Ohmic materials

Other materials do not follow Ohm's Law.

Non-Ohmic materials

(Ohm's Law is not a Law of Nature.)

Example: A 4.0m long 1 connected across a pot	2-guage wire dential difference	carries a curroce of 0.055V.	ent of 2.86A w [12-guage wi	vhen re has a					
diameter of 2.053mm.] a) Determine the current density in the wire.									
b) Determine the resistivity of the wire.c) Determine the electric field in the wire.									
L					_				
Example: A 4.0m long 1 connected across a pol	2-guage wire of	carries a curre	ent of 2.86A w	vhen re has a					
diameter of 2.053mm.] a) Determine the curre	nt density in th	e wire.							
b) Determine the resisc) Determine the elect	tivity of the wire	Э.							
Find a	material of which	the wire could	be made.						
					٦				
Material	Conductivity (× 10 ⁷ /Ωm)	Resistivity (× 10 ⁻⁸ Ωm)	Temperature Coefficient (/°C)						
Aluminum	3.77	2.65	0.00429						
Gold	4.1	2.44	0.0034						
Copper	5.95	1.68	0.00386						
Silver	6.29	1.59	0.0038						
Silicon*	$1.56 \times 10^{-3} / \Omega m$	6.4 $\times 10^2 \Omega m$	−0.075 /°C						

*Silicon values depend strongly on impurities.

\cap	ım's	0147
OI	IIII S	Law

$$\vec{J} = \frac{1}{\rho} \vec{I}$$

Resistivity depends on temperature.

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

 α is the temperature coefficient and ρ_0 is the resistivity at $\mathcal{T}_0.$

Example: A wire at 20°C is connected to a power supply yielding an initial current through the wire of 0.080A. The wire heats up to 260°C , at which the current through the wire is 0.04A. Determine the temperature coefficient of the material.

Microscopic vs. Macroscopic View

Microscopic

- Material
- Resistivity
- $\vec{E} = \rho \vec{J}$
- Current Density

Macroscopic

- Device
- Resistance
- V =
- Current

Connections

 $J = \frac{I}{A}$

 $R = \rho \frac{L}{\Lambda}$