
Electric Current (rate of charge flow) Average Current: $I_{ave} = \frac{\Delta Q}{\Delta t}$ (Counting charge that passes in a given time.)

Electric Current (rate of charge flow)	
Average Current: $I_{\text{ave}} = \frac{\Delta Q}{\Delta t}$	
Instantaneous Current:	-
$I = \frac{dQ}{dt}$,
Unit of current is ampere (A) or amp. $1A = \frac{1C}{1S}$	
Electric Current	
(rate of charge flow)	
Typical Currents: 100W light bulb Automobile starter motor Electronics 1A And	

Current and Current Density

The current in a wire is the sum of all the charge per time passing through a cross-section of the wire.

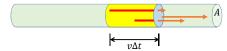
$$Current = \frac{charge}{(area)(time)}(area)$$

$$I = \int \vec{J} \cdot d\vec{A}$$

 \vec{j} is current density.

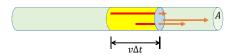
Current and Current Density

$$I = \int \vec{J} \cdot d\vec{A}$$

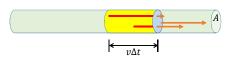

In many applications,

 \vec{J} is uniform and parallel to $d\vec{A}$.

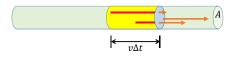
$$I = \int \vec{J} \cdot d\vec{A} = J \int dA = JA$$


$$J = \frac{I}{A}$$

Current A microscopic view

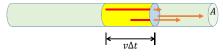

Charges passing a given point in time, Δt , are those initially in a volume, $(v\Delta t)A$.

Current A microscopic view


- Charges passing a given point in time, Δt, are those initially in a volume, (νΔt)A.
 The number of passing charges depends on the charge density, n. N = n(νΔtA)

Current A microscopic view

- Charges passing a given point in time, Δt, are those initially in a volume, (vΔt)A.
 The number of passing charges depends on the charge density, n. N = n(vΔtA)
 The amount of passing charge depends on the charge par corrier σ ΔΩ = σ(vνΔtA)
- charge per carrier, q. $\Delta Q = q(nv\Delta tA)$


Current A microscopic view

$$I = \frac{\Delta Q}{\Delta t} = nqvA$$

• The amount of passing charge depends on the charge per carrier, q. $\Delta Q = q(nv\Delta tA)$

Current A microscopic view

$$I=rac{\Delta Q}{\Delta t}=nqvA$$

$$J=rac{I}{A}=nqv$$
 (not quite correct)

Current Density Corrected	
	A A
 	$v\Delta t$
$I = \frac{\Delta Q}{\Delta t} = nqvA$	$\vec{J} = nq\vec{v}_d$
$ec{v}_d$ is the average velocity, called drift velocity.	

Current Density Corrected	
$\begin{array}{ c c }\hline \Theta & & \Theta \\ \hline \end{array}$	Θ Θ Θ Θ
$\vec{J} = nq\vec{v}_d$ Some free electron densities: • Silver $n = 5.86 \times 10^{28} / \text{m}^3$ • Gold $n = 5.90 \times 10^{28} / \text{m}^3$ • Copper $n = 8.47 \times 10^{28} / \text{m}^3$ • Aluminum $n = 18.1 \times 10^{28} / \text{m}^3$	

Example: Determine the drift speed of electrons in a 14-guage wire carrying a current of 0.5A. [Free electron density in copper is $8.47\times10^{28}/\text{m}^3$ and 14-guage wire has a diameter of $1.63\,\text{mm}$.]