Gauss's Law

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\epsilon_0}$$

Electric flux through a closed surface is proportional to the net charge enclosed.

Symmetry	Gaussian Surface Area	Charge Type	Enclosed Charge
	$4\pi r^2$	Point	Q
Spherical		Surface	0, r < R $\sigma(4\pi R^2), r > R$
		Volume	$\rho\left(\frac{4}{3}\pi r^{3}\right), r < R$ $\rho\left(\frac{4}{3}\pi R^{3}\right), r > R$
	2πrL	Line	λL
Cylindrical		Surface	0, r < R $\sigma(2\pi RL), r > R$
		Volume	$\begin{array}{l} \rho(\pi r^2 L), r < R \\ \rho(\pi R^2 L), r > R \end{array}$
	2A	Surface	σΑ
Planar		Volume	$\rho(2 z A), z < \frac{w}{2}$ $\rho(wA), z > \frac{w}{2}$
(w is the width of a slab of charge.)			

