Math Review

A differential length along the *x*-axis is dx.

A differential length along an arc centered at the origin is ?

Math Review

A differential length along the *x*-axis is dx.

A differential area in Cartesian coordinates is dxdy.

Math Review

A differential length along the *x*-axis is dx.

A differential area in Cartesian coordinates is dxdy.

A differential length along an arc centered at the origin is?

A differential area in polar coordinates is ?

Math Review

A differential length along the *x*-axis is dx.

A differential area in Cartesian coordinates is dxdy.

A differential length along an arc centered at the origin is $Rd\phi$.

A differential area in polar coordinates is $(dr)(rd\phi)$.

Charge Distributions and Densities	
Charge Density	dQ
$\lambda = \frac{Q}{L}$	$\left(\frac{Q}{L}\right)dx$
$\lambda = \frac{Q}{r\Delta\theta}$	$\left(\frac{Q}{r\Delta\theta}\right)rd\phi = \frac{Q}{\Delta\theta}d\phi$
$\sigma = \frac{Q}{ab}$	$\left(\frac{Q}{ab}\right)dxdy$
$\sigma = \frac{Q}{\pi R^2}$	$\left(\frac{Q}{\pi R^2}\right) dr(rd\phi)$
	e Distributions and Der Charge Density $\lambda = \frac{Q}{L}$ $\lambda = \frac{Q}{r\Delta\theta}$ $\sigma = \frac{Q}{ab}$ $\sigma = \frac{Q}{\pi R^2}$

