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Abstract

This paper is intended to study the oscillatory behaviour of solutions of the
higher order nonlinear neutral type functional dynamic equation with oscillating
coefficients of the following form:

[y(t) + p(t)y (τ(t))]∆
n

+

m∑
i=1

qi(t)fi (y (φi(t))) = s(t)

where n ≥ 2. We obtain sufficient conditions for oscillatory behaviour of its solu-
tions. Our results complement the oscillation results for neutral dynamic equations
and improve some oscillation results for neutral differential/difference equations.
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Keywords: Time scale, nonlinear neutral dynamic equation, oscillating coefficient.

1 Introduction
In this paper we consider the higher order nonlinear dynamic equation of the form

[y(t) + p(t)y (τ(t))]∆
n

+
m∑
i=1

qi(t)fi (y (φi(t))) = s(t) (1.1)

where n ≥ 2, p(t), qi(t) ∈ Crd [t0,∞)T for i = 1, 2, . . . ,m; p(t) and s(t) are oscillating
functions (p(t) : T→ R), qi(t) are positive real valued for i = 1, 2, . . . ,m; φi(t) ∈
Crd [t0,∞)T, φ∆

i (t) > 0, the variable delays τ , φi : [t0,∞)T → T with τ(t), φi(t) <
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t for all t ∈ [t0,∞)T, φi(t) → ∞ as t → ∞ for i = 1, 2, . . . ,m; τ(t) → ∞ as
t → ∞; fi (u) ∈ C (R,R) are nondecreasing functions, ufi (u) > 0 for u 6= 0 and
i = 1, 2, . . . ,m.

A dynamic equation is said to be a delay dynamic equation if τ(t) < t. Equation
(1.1) is called neutral dynamic equation if the highest order differential operator is ap-
plied both to the unknown function and to its composition with a delay function. A
solution y(t) to equation (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is called nonoscillatory. Equation (1.1) is called
oscillatory if all its solutions are oscillatory.

In the literature, there are a few papers devoted to the study of delay difference/
differential equations with an oscillating coefficients in the neutral part of the equation.
The problem of obtaining sufficient conditions for oscillatory behaviour of the solutions
has been studied by a number of authors, see [8, 10] and references given there. The
readers are referred to [2] for the oscillation theory of higher order neutral difference
equations and to [1] for the fundamental studies on the oscillation theory.

Our work is inspired by [6] and [7], where the authors study the oscillatory behaviour
of solutions of higher order nonlinear neutral type differential and difference equations
with oscillating coefficients, respectively. We note that equation (1.1) involves some
different types of differential and difference equations depending on the choice of the
time scale T. This paper is intended to study the oscillatory behaviour of solutions of
equation (1.1).

For the sake of convenience, the function z(t) is defined by

z(t) = y(t) + p(t)y (τ(t))− r(t), (1.2)

where r(t) ∈ Crd [t0,∞)T is n times ∆-differentiable. The function r(t) is an oscillating
function with the property r∆n

(t) = s(t).

2 Basic Definitions and Some Auxiliary Lemmas
A time scale T is an arbitrary nonempty closed subset of the real numbers R. For t ∈ T
we define the forward jump operator σ : T→ T by

σ(t) := inf {s ∈ T : s > t}

while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup {s ∈ T : s < t} .

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-
scattered. Also, if σ(t) = t, then t is called right-dense, and if ρ(t) = t, then t is called
left-dense. The graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t.
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We introduce the set Tκ which is derived from the time scale T as follows. If T has
left-scattered maximum m, then Tκ = T− {m}, otherwise Tκ = T.

Definition 2.1 (See [3]). The function f : T→ R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T.

Theorem 2.2 (See [3]). Assume that ν : T→ R is strictly increasing and T̃ := ν (T) is
a time scale. Let w : T̃→ R. If ν∆(t) and w∆̃ (ν(t)) exist for t ∈ Tκ, then

(w ◦ ν)∆ =
(
w∆̃ ◦ ν

)
ν∆,

where we denote the derivative on T̃ by ∆̃.

Definition 2.3 (See [3]). Let f : T → R be a function. If there exists a function
F : T→ R such that F∆(t) = f(t) for all t ∈ Tκ, then F is said to be an antiderivative
of f . We define the Cauchy integral by

b∫
a

f(τ)∆τ = F (b)− F (a) for a, b ∈ T.

Theorem 2.4 (See [4]). Let u and v be continuous functions on [a, b] that are ∆-
differentiable on [a, b). If u∆ and v∆ are integrable from a to b, then

b∫
a

u∆(t)v(t)∆t+

b∫
a

uσ(t)v∆(t)∆t = u(b)v(b)− u(a)v(a).

Let T̃ = T∪{supT} ∪ {inf T}. If∞ ∈ T̃, we call∞ left-dense, and −∞ is called
right-dense provided −∞ ∈ T̃. For any left-dense t0 ∈ T̃ and any ε > 0, the set

Lε (t0) = {t ∈ T : 0 < t0 − t < ε}

is nonempty, and so is Lε (∞) =

{
t ∈ T : t >

1

ε

}
if∞ ∈ T̃.

Lemma 2.5 (See [5]). Let n ∈ N and f be n-times differentiable on T. Assume∞ ∈ T̃.
Suppose there exists ε > 0 such that

f(t) > 0, sgn
(
f∆n

(t)
)
≡ s ∈ {−1,+1} for all t ∈ Lε (∞) ,

and f∆n

(t) 6= 0 on Lδ (∞) for any δ > 0. Then there exists υ ∈ [0, n] ∩ N0 such that
n+ υ is even for s = 1 and odd for s = −1 with{

(−1)υ+j f∆j

(t) > 0 for all t ∈ Lε(∞), j ∈ [υ, n− 1] ∩ N0

f∆j

(t) > 0for all t ∈ Lδj (∞) ( with δj ∈ (0, ε)), j ∈ [1, υ − 1] ∩ N0.
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Lemma 2.6 (See [5]). Let f be n-times differentiable on Tκn , t ∈ T, and α ∈ Tκn .
Then with the functions hk defined as hn (t, s) = (−1)n gn (s, t),

h0 (r, s) ≡ 1 and hk+1 (r, s) =

r∫
s

hk (τ, s) ∆s for k ∈ N0,

we have

f(t) =
n−1∑
k=0

hk (t, α) f∆k

(α) +

ρn−1(t)∫
α

hn−1 (t, σ (τ)) f∆n

(τ) ∆τ.

Lemma 2.7 (See [5]). Let f be n-times differentiable on Tκn and m ∈ N with m < n.
Then we have for all α ∈ Tκn−1+m

and t ∈ Tκm

f∆m

(t) =
n−m−1∑
k=0

hk (t, α) f∆k+m

(α) +

ρn−m−1(t)∫
α

hn−m−1 (t, σ (τ)) f∆n

(τ) ∆τ.

Lemma 2.8 (See [5]). Suppose f is n-times differentiable and gk, 0 ≤ k ≤ n − 1, are
differentiable at t ∈ Tκn with

g∆
k+1(t) = gk (σ(t)) for all 0 ≤ k ≤ n− 2.

Then we have [
n−1∑
k=0

(−1)k f∆k

gk

]∆

= fg∆
0 + (−1)n−1 f∆n

gσn−1.

3 Main Results
We will need the following lemma in order to prove our results.

Lemma 3.1. Let f be n-times differentiable on Tκn . If f∆ > 0, then for every λ,
0 < λ < 1, we have

f(t) ≥ λ(−1)n−1gn−1 (σ(T ∗), t) f∆n−1

(t). (3.1)

Proof. Let υ, 0 ≤ υ ≤ n−1, be the integer assigned to the function f as in Lemma 2.5.
Because of f∆ > 0, we always have υ > 0. Furthermore, let T ∗ ≥ T be assigned to f
by Lemma 2.5. Then, using the Taylor formula (Lemma 2.6) on time scales, for every
ρn−1(t) ≥ T ∗ we obtain

f(t) ≥
ρn−1(t)∫
T ∗

(−1)n−1 gn−1 (σ(τ), t) f∆n

(τ) ∆τ. (3.2)
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By Theorem 2.4 and (3.2) we have

f(t) ≥ (−1)n−1 gn−1 (σ(t), t) f∆n−1

(t)−
ρn−1(t)∫
T ∗

(−1)n−1 gn−1 (σ(τ), t) f∆n−1

(τ) ∆τ.

Since f is n-times differentiable on Tκn and m ∈ N with m < n, we have, by
Lemma 2.7 with n and f substituted by n−m and f∆m

, respectively:

f∆m

(t) ≥
ρn−m−1(t)∫
T ∗

(−1)n−m−1 gn−m−1 (σ(τ), t) f∆n

(τ) ∆τ.

Also for every ρn−1(t), s with ρn−1(t) ≥ T ∗ and T ∗ ≤ s ≤ t we have

f∆m

(s) ≥ (−1)n−m−1 gn−m−1 (σ(T ∗), t) f∆n

(t).

This is obvious for m = n− 1 and, when m < n− 1, it can be derived by applying the
Taylor formula. Thus for all t ≥ T ∗ we get

f(t) ≥ (−1)n−1 gn−1 (σ(T ∗), t) f∆n−1

(t)

and therefore the proof can be immediately completed.

Lemma 3.1 is an extension of results presented in [1, 1.8.14] and [9, Lemma 2].
Indeed, for T = Z, we have ρ(t) = t− 1, σ(t) = t+ 1 and

gn−1 (σ(T ∗), t) =
(t− T ∗ − 1)(n−1)

(n− 1)!
.

Hence, we get the inequality in [1]

u(t) ≥ 1

(n− 1)!
(n− n1)(n−1) ∆n−1u

(
2n−m−1n

)
.

In the case T = R, we have ρ(t) = σ(t) = t and

gn−1 (σ(T ∗), t) =
(t− T ∗)(n−1)

(n− 1)!
.

Hence, we get the inequality in [9]

u(t) ≥ ϑ

(n− 1)!
(t)n−1un−1(t).

Furthermore there might be other time scales that we cannot appreciate at this time due
to our current lack of “real-world” examples.
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Theorem 3.2. Assume that n is odd and

(C1) lim
t→∞

p(t) = 0 and lim
t→∞

r(t) = 0;

(C2)

∞∫
t0

sn−1

m∑
i=1

qi (s) ∆s =∞.

Then, every bounded solution to equation (1.1) is either oscillatory or tends to zero as
t→∞.

Proof. Assume that equation (1.1) has a bounded nonoscillatory solution y(t). Without
loss of generality, assume that y(t) is eventually positive (the proof is similar when y(t)
is eventually negative). That is, y(t) > 0, y (τ(t)) > 0 and y (φi(t)) > 0 for t ≥ t1 ≥ t0
and i = 1, 2, . . . ,m. Assume further that y(t) does not tend to zero as t → ∞. By
(1.1)–(1.2) we have

z∆n

(t) = −
m∑
i=1

qi (t) fi (y (φi(t))) < 0 (3.3)

for t ≥ t1. It follows that z∆j

(t), j ∈ [0, n− 1]∩N0 is strictly monotone and eventually
of constant sign. Since p(t) and r(t) are oscillating functions, there exists a t2 ≥ t1 such
that if t ≥ t2, then z(t) > 0 eventually. Since y(t) is bounded, by virtue of (C1) and
(1.2), there is a t3 ≥ t2, such that z(t) is also bounded for t ≥ t3. Because n is odd
and z(t) is bounded, by Lemma 2.5, when υ = 0 (otherwise z(t) is not bounded) there
exists t4 ≥ t3 such that for t ≥ t4 we have (−1)j z∆j

(t) > 0, j ∈ [0, n− 1] ∩ N0.
In particular, since z∆(t) < 0 for t ≥ t4, z(t) is decreasing. Since z(t) is bounded,

we write lim
t→∞

z(t) = L, (−∞ < L <∞). Assume that 0 ≤ L < ∞. Let L > 0. Then

there exists a constant c > 0 and a t5 ≥ t4 such that z(t) > c > 0 for t ≥ t5. Since y(t)
is bounded, lim

t→∞
p(t)y (τ(t)) = 0 by (C1). Therefore, there exists a constant c1 > 0 and

a t6 ≥ t5 such that y(t) = z(t) − p(t)y (τ(t)) + r(t) > c1 > 0 for t ≥ t6. So that we
can find a t7 with t7 ≥ t6 such that y (φi(t)) > c1 > 0 for t ≥ t7. From (3.3) we have

z∆n

(t) = −
m∑
i=1

qi(t)fi (c1) < 0 (3.4)

for t ≥ t7. By multiplying (3.4) by tn−1 and integrating it from t7 to t, we obtain

F (t)− F (t7) ≤ −f (c1)

t∫
t7

m∑
i=1

qi (s) s
n−1∆s, (3.5)

where

F (t) =
n−1∑
i=1

(−1)i+1 (tn−1
)∆i

z∆n−i (
σi(t)

)
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and
σi(t) = σ

(
σi−1(t)

)
.

Since (−1)k z∆k

(t) > 0 for k = 0, 1, 2, . . . , n − 1 and t ≥ t4, we have F (t) > 0 for
t ≥ t7. From (3.5) we have

−F (t7) ≤ −f (c1)

t∫
t7

m∑
i=1

qi (s) s
n−1∆s.

By (C2), we obtain

−F (t7) ≤ −f (c1)

t∫
t7

m∑
i=1

qi (s) s
n−1∆s = −∞

as t→∞. This is a contradiction. Hence, L > 0 is impossible. Therefore, L = 0 is the
only possible case. That is lim

t→∞
z(t) = 0. Since y(t) is bounded, by (C1), we obtain

lim
t→∞

y(t) = lim
t→∞

z(t)− lim
t→∞

p(t)y(t) + lim
t→∞

r(t) = 0.

Now let us consider the case y(t) < 0 for t ≥ t1. By (1.1)–(1.2), we have

z∆n

(t) = −
m∑
i=1

qi(t)fi (y (φi(t))) > 0

for t ≥ t1. That is, z∆n

> 0. It follows that z∆j

(t), (j ∈ [0, n− 1] ∩ N0) is strictly
monotone and eventually of constant sign. Since p(t) and r(t) are oscillating functions,
there exists a t2 ≥ t1 such that if t ≥ t2, then z(t) < 0 eventually. Since y(t) is bounded,
by (C1) and (1.2) there is t3 ≥ t2 such that z(t) is also bounded for t ≥ t3. Assume
that x(t) = −z(t). Then x∆n

(t) = −z∆n

(t). Therefore, x(t) > 0 and x∆n

(t) < 0 for
t ≥ t3. Hence, we observe that x(t) is bounded. Since n is odd, by Lemma 2.5, there
exists t4 ≥ t3 and υ = 0 (otherwise x(t) is not bounded) such that (−1)j x∆j

(t) > 0,
j ∈ [0, n− 1]∩N0 and t ≥ t4. That is, (−1)j z∆j

(t) < 0, j ∈ [0, n− 1]∩N0 and t ≥ t4.
In particular, for t ≥ t4 we have z∆(t) > 0. Therefore, z(t) is increasing. So, we can
assume that lim

t→∞
z(t) = L, (−∞ < L ≤ 0). As in the proof of y(t) > 0, we may obtain

that L = 0. As for the rest, it is similar to the case of y(t) > 0. That is, lim
t→∞

y(t) = 0.
This contradicts our assumption. Hence, the proof is completed.

Theorem 3.3. Assume that n is even and (C1) holds. Moreover, the following conditions
are satisfied:
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(C3) there is a function ϕ(t) such that ϕ(t) ∈ Crd [t0,∞)T,

lim
t→∞

sup

t∫
t0

ϕ (s)
m∑
i=1

qi (s) ∆s =∞

and

lim
t→∞

sup

t∫
t10

[
ϕ∆ (s)

]2
ϕ (s) gσn−2 (σ(φi(s)), φi (s))

∆s <∞

for ϕ(t) and i = 1, 2, . . . ,m.

Then, every bounded solution to equation (1.1) is oscillatory.

Proof. Suppose that equation (1.1) has a bounded nonoscillatory solution y(t). Without
loss of generality we can assume that y(t) is eventually positive (the proof is similar
when y(t) is eventually negative). That is, y(t) > 0, y (τ(t)) > 0 and y (φi(t)) > 0 for
t ≥ t1 ≥ t0. By (1.1)–(1.2), we have (3.3) for t ≥ t1. Then z∆n

(t) < 0. It follows that
z∆j

(t), j ∈ [0, n− 1] ∩ N0 is strictly monotone and eventually of constant sign. Since
p(t) and r(t) are oscillating functions, there exists t2 ≥ t1 such that for t ≥ t2, we have
z(t) > 0. Since y(t) is bounded, by (C1) and (1.2), there is t3 ≥ t2, such that z(t) is
also bounded for t ≥ t3. Because n is even, by Lemma 2.5 when υ = 1 (otherwise z(t)
is not bounded), there exists t4 ≥ t3 such that for t ≥ t4 we have

(−1)j+1 z∆j

(t) > 0, j ∈ [0, n− 1] ∩ N0. (3.6)

In particular, since z∆(t) > 0 for t ≥ t4, z(t) is increasing. Since y(t) is bounded,
lim
t→∞

p(t)y (τ(t)) = 0 by (C1). Then there exists t5 ≥ t4 and a positive integer δ such
that, by (1.2),

y(t) = z(t)− p(t)y (τ(t)) + r(t) >
1

δ
z(t) > 0

for t ≥ t5. We may find a t6 ≥ t5 such that for t ≥ t6 and i = 1, 2, . . . ,m.

y (φi(t)) >
1

δ
z (φi(t)) > 0. (3.7)

From (3.3), (3.7) and the properties of f we have

z∆n

(t) ≤ −
m∑
i=1

qi(t)fi

(
1

δ
z (φi(t))

)
= −

m∑
i=1

qi(t)
fi
(

1
δ
z (φi(t))

)
z (φi(t))

z (φi(t)) (3.8)
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for t ≥ t6. Since z(t) > 0 is bounded and increasing, lim
t→∞

z(t) = L, (0 < L < +∞).
By the continuity of f , we have

lim
t→∞

fi
(

1
δ
z (φi(t))

)
z (φi(t))

=
fi
(
L
δ

)
L

> 0.

Then there is t7 ≥ t6 such that for t ≥ t7, i = 1, 2, . . . ,m, we have

fi
(

1
δ
z (φi(t))

)
z (φi(t))

=
fi
(
L
δ

)
2L

= α > 0. (3.9)

By (3.8)–(3.9),

z∆n

(t) ≤ −α
m∑
i=1

qi(t)z (φi(t)) , for t ≥ t7. (3.10)

Set

w(t) =
z∆n−1

(t)

z
(

1
δ
φi(t)

) . (3.11)

We know from (3.6) that there is t8 ≥ t7 such that, for sufficiently large t ≥ t8,w(t) > 0.
Therefore, ∆-differentiating (3.11) we obtain

w∆(t) =
z∆n

(t)

z (δ−1φi (t))
− z∆n−1

(σ (t)) z∆ (δ−1φi (t)) δ
−1φ∆

i (t)

z (δ−1φi (t)) z (δ−1φi (σ(t)))

=
z∆n

(t)z (δ−1φi (σ (t)))− z∆n−1
(σ(t)) z∆ (δ−1φi (t)) δ

−1φ∆
i (t)

z (δ−1φi(t)) z (δ−1φi (σ (t)))

≤ z∆n
(t) z (δ−1φi (σ (t)))− z∆n−1

(σ(t)) z∆ (δ−1φi (t)) δ
−1φ∆

i (t)

[z (δ−1φi (t))]
2

=
z∆n

(t) z (δ−1φi (σ (t)))

[z (δ−1φi (t))]
2 − z∆n−1

(σ (t)) z∆ (δ−1φi (t)) δ
−1φ∆

i (t)

[z (δ−1φi (t))]
2

≤ z∆n
(t)

z (δ−1φi (t))
− 1

δ

z∆n−1
(t) z∆ (δ−1φi (t))φ

∆
i (t)

[z (δ−1φi (t))]
2

=
z∆n

(t)

z (δ−1φi (t))
− 1

δ
w (t)

z∆ (δ−1φi (t))φ
∆
i (t)

z (δ−1φi (t))
. (3.12)

By (3.6) there is t ≥ t9, such that z∆(t) > 0 and z∆n−1

(t) > 0 for an even n. Since
z(t) > 0 is increasing, z

(
δ−1φi (σ(t))

)
> z

(
δ−1φi(t)

)
for i = 1, 2, . . . ,m. Therefore,

by Lemma 3.1, we get

z
(
δ−1φi(t)

)
≥ λ (−1)n−1 gn−1 (σ (φi(t)) , φi(t)) z

∆n−1

(φi(t)) . (3.13)

Then, ∆–differentiating (3.13), using Lemma 2.8 and

g∆
n−1 (σ(t), t) = gσn−2(σ(t), t),
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we get

[
z
(
δ−1φi(t)

)]∆ ≥ λ (−1)n−2 g∆
n−1 (σ(φi(t)), φi(t)) z

∆n−1

(φi(t))

≥ λ (−1)n−2 gσn−2 (σ(φi(t)), φi(t)) z
∆n−1

(φi(t)) .

By Lemma 2.4, we have

z∆
(
δ−1φi(t)

)
δ−1φ∆

i (t) ≥ λ (−1)n−2 gσn−2 (σ(φi(t)), φi(t)) z
∆n−1

(φi(t)) .

Since φi(t) ≤ t, we obtain

z∆
(
δ−1φi(t)

)
≥
δλ (−1)n−2 gσn−2 (σ(φi(t)), φi(t)) z

∆n−1
(t)

φ∆
i (t)

. (3.14)

Hence, by (3.10), (3.13) and (3.14), we conclude

w∆(t) ≤
−α

m∑
i=1

qi(t)z (φi(t))

z (δ−1φi(t))

−1

δ
w(t)

δλ (−1)n−2 gσn−2 (σ(φi(t)), φi(t)) z
∆n−1

(t)

φ∆
i (t)

φ∆
i (t)

z (δ−1φi(t))

≤ −α
m∑
i=1

qi(t)− λ (−1)n−2w2(t)gσn−2 (σ(φi(t)), φi(t))

and then

α

m∑
i=1

qi(t) ≤ −w∆(t)− λ (−1)n−2w2 (t) gσn−2 (σ(φi(t)), φi(t)) (3.15)

for t ≥ t10. Multiplying (3.15) by ϕ(t) and integrating it from t10 to t we obtain, by
Theorem 2.4,

α

t∫
t10

ϕ (s)
m∑
i=1

qi (s) ∆s ≤ −
t∫

t10

ϕ (s)w∆ (s) ∆s

−
t∫

t10

λ (−1)n−2 ϕ (s)w2 (s) gσn−2 (σ(φi(s)), φi (s)) ∆s
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≤ −

ϕ(t)w(t)− ϕ (t10)w (t10)−
t∫

t10

ϕ∆ (s)wσ(t)∆s


−

t∫
t10

λ (−1)n−2 ϕ (s)w2 (s) gσn−2 (σ(φi(s)), φi (s)) ∆s

≤ ϕ (t10)w (t10) +

t∫
t10

ϕ∆ (s)wσ(t)∆s

−λ
t∫

t10

ϕ (s)w2 (s) gσn−2 (σ(φi(s)), φi (s)) ∆s

≤ ϕ (t10)w (t10)− λ
t∫

t10

ϕ (s) gσn−2 (σ(φi(s)), φi (s))

×
[
w (s)− ϕ∆ (s)

2λϕ (s) gσn−2 (σ(φi(s)), φi (s))

]2

∆s

+

t∫
t10

[
ϕ∆ (s)

]2
4λϕ (s) gσn−2 (σ(φi(s)), φi (s))

∆s

≤ ϕ (t10)w (t10) +

t∫
t10

[
ϕ∆ (s)

]2
4λϕ (s) gσn−2 (σ(φi(s)), φi (s))

∆s.

Therefore, by (C3), we conclude

∞ = αlim sup
t→∞

t∫
t10

ϕ (s)
m∑
i=1

qi (s) ∆s

≤ ϕ (t10)w (t10) +
1

4λ
lim sup
t→∞

t∫
t10

[
ϕ∆ (s)

]2
ϕ (s) gσn−2 (σ(φi(s)), φi (s))

∆s

< ∞.

This is a contradiction. Now let us consider the case y(t) < 0 for t ≥ t1. By (1.1)–(1.2),
we have

z∆n

(t) = −
m∑
i=1

qi(t)fi (y (φi(t))) > 0

for t ≥ t1. That is, z∆n

> 0. It follows that z∆j

(t), (j ∈ [0, n− 1] ∩ N0) is strictly
monotone and eventually of constant sign. Since p(t) is an oscillatory function, there
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exists t2 ≥ t1 such that z(t) < 0 for t ≥ t2. Since y(t) is bounded, by (C1) and (1.2),
there is t3 ≥ t2 such that z(t) is also bounded for t ≥ t3. Assume that x(t) = −z(t).
Then x∆n

(t) = −z∆n

(t). Therefore, x(t) > 0 and x∆n

(t) < 0 for t ≥ t3. Hence, we
observe that x(t) is bounded. Since n is odd, by Lemma 2.5, there exists t4 ≥ t3 and
υ = 1 (otherwise x(t) is not bounded) such that (−1)k x∆k

(t) >, k ∈ [0, n− 1] ∩ N0

and t ≥ t4. That is, (−1)k z∆k

(t) < 0, k ∈ [0, n− 1] ∩ N0 and t ≥ t4. In particular, for
t ≥ t4 we have z∆(t) > 0. Therefore, z(t) is increasing. For the rest of the proof, we
can proceed similarly to the case of y(t) > 0. Hence, the proof is completed.
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