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Abstract

In this note we show how one can obtain results fromrthiela calculus from
results on thalelta calculus and vice versa via a duality argument. We provide
applications of the main results to the calculus of variations on time scales.
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1 Introduction

Thetime scale delta calculugas introduced for the first time in 1988 by Hilger [9]
to unify the theory of difference equations and the theory of differential equations. It
was extensively studied by Bohner [4] and Hilscher and Zeidan [10] who introduced
the calculus of variations on thiene scale deltzalculus (or simplydeltacalculus). In
2001 thetime scale nabla calculugr simply nablacalculus) was introduced by Atici
and Guseinov [2].

Both theories of thelelta and thenabla calculus can be applied to any field that
requires the study of both continuous and discrete data. For instancelaealculus
has been applied to maximization (minimization) problems in economics [1,2]. Re-
cently several authors have contributed to the development of the calculus of variations
on time scales (for instance, see [3,11, 12]).

To the best of the author’s knowledge there is no known technique to obtain results
from the nabla calculus directly from results on theelta calculus and vice versa. In
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this note we underline that, in fact, this is possible. We show that the two types of
calculus, thenablaand thedeltaon time scales, are the “dual” of each other. One can
reciprocally obtain results for one type of calculus from the other and vice versa without
making any assumptions on the regularity of the time scales (as it was done in [8]). We
prove that results for theabla (respectively thelelta) calculus can be obtained by the
dual analogous ones which will be in tdelta (respectivelynabla) context. Therefore,
if they have already been proven for thelta case (respectively theelta), it is not
necessary to reprove them for thablasetting (respectivelpabla).

This article is organized as follows: in the second section we review some basic
definitions. In third section we introduce tloial time scales. In the fourth section
we derive a few properties related to duality. In the fifth section we state the Duality
Principle, which is the main result of the article, and we apply it to a few examples.
Finally, in the last section, we apply the Duality Principle to the calculus of variations
on time scales.

2 Review of Basic Definitions

We first review some basic definitions and hence introduce both types of calculus (for
a complete list of definitions for theéelta calculus see the pioneering book by Bohner
and Peterson [5]).

A time scal€T is any closed nonempty subseof R.

Thejump operatorss, p : T — T are defined by

o(t)=inf{s € T:s>t}, andp(t) =sup{seT:s <t}

with inf () := sup T, sup () := inf T. A point¢t € T is calledright-densef o(¢) = t,
right-scatteredf o(t) > t, left-densef p(t) = t, left-scatteredf p(t) < ¢.

Theforward graininess: : T — R is defined byu(t) = o(t) — t, and thebackward
graininessy : T — R is defined by(t) =t — p(t).

Given a time scalél, we denotel™ := T \ (p(sup T),sup T}, if supT < oo and
T" :=Tif supT = oo0. AlsOT, := T\ [inf T, o(inf T)) if inf T > —occ andT,, =: T
if inf T = —oo. In particular, ifa,b € T with a < b, we denote bya, b] the interval
[a,b] N'T. It follows that

[a7b]n = [a,p(b)], and [aa b]k = [J(a)vb]'

Of courseR itself is one trivial example of time scale, but one could also fAke
be the Cantor set. For more interesting examples of time scales we suggest reading [5].

Definition 2.1. A function f defined onT is called rd-continuous (or right-dense con-
tinuous) (we writef € C,,) if itis continuous at the right-dense points and its left-sided
limits exist (finite) at all left-dense pointg;is Id-continuous (or left-dense continuous)
if it is continuous at the left-dense points and its right-sided limits exist (finite) at all
right-dense point.
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2.1 Definition of Derivatives

Definition 2.2. A function f : T — R is said to bedeltadifferentiable at € T" if for
all e > 0 there existd/ a neighborhood of such that for some, the inequality

[f(o(t)) = f(s) —alo(t) — s)| < elo(t) — s,
is true for alls € U. We write f*(t) = o

Definition 2.3. f : T — R is said to bedeltadifferentiable orT' if f : T — R is delta
differentiable for allt € T".

It is easy to show that, if is deltadifferentiable oril, then
1o =1+ur,
wheref? = f o ¢ (the proof can be found in [5]).

Definition 2.4. A function f : T — R is said to benabladifferentiable at € T, if for
all e > 0 there existd/ a neighborhood of such that for somg, the inequality

[f(p(t)) = f(s) = Blp(t) — s)| <elp(t) — s,
is true for alls € U. We write f¥ (t) = £3.

Definition 2.5. f : T — R is said to benabladifferentiable ol if f : T — R is nabla
differentiable for allt € T,.

It is easy to show that, if is nabladifferentiable orl, then
;r=f-vfv,
wheref” = f o p (this formula can be seen in [1]).
Definition 2.6. f is rd-continuouslydelta differentiable (we writef € C) if f2(t)
exists for allt € TF and f* € C,4, andf is ld-continuouslynabla differentiable (we
write f € CL) if £V (t) exists for allt € T, andf¥ € Cq.
Remark2.7. If T = R, then the notion ofleltaderivative anchabladerivative coincide

and they denote the standard derivative we know from calculus, however,Tvhen,
then they do not coincide (see [5]).
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3 Dual Time Scales

In this section we introduce the definitionadial time scales. We will see that our main
result develops merely from this basic definitionddaltime scale is just the “reverse”
time scale of a given time scale. More precisely, we define it as follows:

Definition 3.1. Given a time scal& we define the dual time scale
T :={s e R| —s e T}

Once we have defineddual time scale, it is natural to extend all the definitions of
Section 2. We now introduce some notation regarding the correspondence between the
definitions on a time scale and its dual.

Let T be a time scale. Ip ando denote its associated jump functions, then we
denote byp ands the jump functions associated . If . andv denote, respectively,
the forward graininessandbackward graininesassociated t@, then we denote by
andv, respectively, théorward graininessand thebackward graininessssociated to
T™.

Next, we define another fundamental “dual” object, i.e., the “dual” function.

Definition 3.2. Given a functionf : T — R defined on time scal@ we define the dual

function f* : T* — R on the time scal&™ := {s € R| — s € T} by f*(s) := f(—s)
forall s € T*.

Definition 3.3. Given a time scal& we refer to thaleltacalculus (respnablacalculus)
any calculation that involvedeltaderivatives (resmabladerivatives).

4 Dual Correspondences

In this section we deduce some basic lemmas which follow easily from the definitions.
These lemmas concern the relationship betwhex objects. We will use the following
notation: given the quintuplél, o, p, i1, v), whereT denotes a time scale with jump
functions, o, p, and associatetbrward graininess; and backward graininesy, its

dual will be (T*, &, p, 1, 7) whereg, p, i1, and will be given as in Lemma 4.2 and 4.4
that we will prove in this section. Alsd) andV will denote the derivatives for the time

scaleT andA andV will denote the derivatives for the time scalé.

Lemmad4.l.1f a,b € T witha < b, then
([CL, b])* = [_b7 —CL].
Proof. The proof is straightforward. In fact,
s € ([a, b)) iff —selab] iff se[-b —al

This completes the proof. O
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Lemma 4.2. Giveno, p : T — T, the jump operators foff', then the jump operators
for T*, 6 andp : T* — T*, are given by the following two identities:

forall s € T™.

Proof. We show the first identity. Using the definition and some simple algebra,
o(s)=inf{—weT:—w< —s}=—sup{veT:v<—-s}=—p(—s).
The second identity follows similarly. O
Lemma 4.3.If T is a time scale, then
(T7)* = (T*")., and (T,)" = (T*)".
Proof. We first observe thatup T = — inf T*. If sup T = oo, then
(T%)" = (T)" = (T")x.
If supT < oo, then
(T%)" = (T'\ (p(sup T), sup T])* = T\ (p(sup T), sup T})* = (T*)s.
Similarly, (T, )* = (T*)". O

Lemma 4.4. Givenyu : T — R, the forward graininess df, then the backward graini-
ness ofl™, v : T* — R, is given by the identity

v(s) = p*(s) for all se T

Also, givenw : T — R, the backward graininess @I, then the forward graininess of
T*, i : T — R, is given by the identity

a(s) =v*(s) for all s e T
Proof. We prove the first identity. Let € T*, then
D(s) =s5—p(s) =s+0"(s) = p*(s).
The second identity follows analogously. O

Lemma4.5.Givenf : T — R, fis rd continuous (resp. Id continuous) if and only if its
dual f* : T* — Ris Id continuous (resp. rd continuous).
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Proof. We will only show the statement for rd continuous functions as the proof for Id
continuous functions is analogous. We first observetttafl is a right-dense point iff

—t € T* is a left-dense point. Alsof : T — R is continuous at iff /* : T* — R is
continuous at-t. Let f : T — R be a function, then, the following is tru¢:: T — R

is rd continuous ifff is continuous at the right-dense points and its left-sided limits exist
(finite) at all left-dense points iff* is continuous at the left-dense points and its right-
sided limits exist (finite) at all right-dense points fff : T* — R is Id continuous. [

The next lemma linksglelta derivatives tonabla derivatives, showing that the two
fundamental concepts of the two types of calculus are, in a certain sense, the dual of
each other. In fact, this is the key lemma for our main results.

Lemma 4.6.Let f : T — R be delta (resp. nabla) differentiable &t € T" (resp. at
to € T,), thenf* : T* — R is nabla (resp. delta) differentiable att, € (T*), (resp.
at —to € (T*)"), and the following identities hold true

FAto) = —(f)V(~to) (resp. f¥(to) = —(f*)*(~to)),

or, . A
FAto) = —((f)V)*(t) (resp. f¥(to) = —((f*)%)"(t0)),
or, . .
(f2)(=to) = =((f)V)(~ta) (resp. (fV)*(~to) = —(f*)*(~to)),

whereA, V denote the derivatives for the time sc@land A, V denote the derivatives
for the time scal&r™.

Proof. The proof is trivial but for the sake of completeness we will write all the de-
tails. We will prove thatiff : T — R is deltadifferentiable at, € T", thenf* is nabla
differentiable at-¢, € (T*),. Let f : T — R bedeltadifferentiable at, € 7. Then

for all e > 0 there existd/ a neighborhood of, such that the inequality

[f(a(to)) = f(s) = f2(to) (o (to) = 5)| < elo(to) — s,

is true for alls € U. Next, using Lemma 4.2, as well as the definition of dual function
f*, we rewrite the above inequality as

[f(=(—t0)) = f*(=5) = F2(to)(=p(—to) — )| < e] = p(~t0) — 5],

forall s € U. LetU” be the dual ol/. Lett € U*, then—t € U. Hence, by replacing
by —t, we obtain

[ (p(—to)) — F(t) = [2 (o) (—p(—to) + )| < €| — p(—to) +t],

[ ((=t0)) = F*(t) = (= F2(t0)) (p(—t0) — t)] < elp(~t0) — 1.
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By definition, this implies that the functiofi* is nabladifferentiable at-¢,, and

(¥ (—to) = —f2(to)-

Analogously, it follows that, iff : T — R is nabladifferentiable att, € T,, then
f*: T* — Ris deltadifferentiable at-t, € (T*)", and

(£ (—to) = = (t0).
The proof is complete. O
The next two lemmas link the notions 6f, andC;, functions.

Lemma 4.7. Given a functiorf : T — R, f belongs taC?, (resp.C,) if and only if its
dual f* : T* — R belongs taCy, (resp.C,) .

Lemma 4.8. Given a functionf : T — R, f belongs toC’, , (resp.C,,,) if and only if
its dual f* : T* — R belongs taC), (resp.C,,,) -

In the following example we derive a well-known formula for derivatives. We will
deduce the formula for theabladerivative using the one for tiaeltaderivative.

Example 4.9 (Formula for Derivatives). It is well known (see [4]) that iff is delta
differentiable orl, with ;. the associated forward graininess, then

fo(t) = f(t) + ut)f2(t) for all t e T, (4.1)

wheref? = foo. We will use it to derive the analogous formula for thebladerivative.
Suppose that is nabladifferentiable orll , with v its associated backward graininess,
then its dual functio* is deltadifferentiable orll™*. Hence, we apply (4.1) tb*:

(h*)?(s) = h*(s) + fu(s)(h*)2(s) for all s € (T*)". (4.2)

We observe thaf; = v*, while (h*)”’ = h” by Lemma 4.2, and Lemma 4.4, with
h? = ho p, and(h*)® = —hY by Lemma 4.6. So,

hP(t) = h(t) — v(t)hY (t) for all t € T,. (4.3)
We recall that this formula (4.3) has appeared inrthblacontext in [1].

Next, using Lemma 4.5 and Lemma 4.6, we show in the following proposition how
to comparenablaanddeltaintegrals.

Proposition 4.10. (i) If f : [a,b] — R is rd continuous, then

[ rwai= [ rews
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(i) If f:]a,b] — Risld continuous, then

/abf(t)w = /;a f*(s)As.

Proof. Proof of (i). By definition of the integral,
b
/ f(t)At = F(b) — F(a), where F

is an antiderivative of, i.e.,

We have seen in Lemma 4.6 thft(s) = (F2)*(s) = —(F*)@(s). Also, again by
definition,

/ P (s)Vs = G(—a) — G(—b), whereG

is an antiderivative of*, i.e.,
GV (s) = f*(s).
It follows thatG = —F* + ¢, wherec € R, and

—a b
/b [*(s)Vs = —F*(=a) + F*(=b) = —F(a) + F(b) = / fFO)AL.

Proof of (ii). We apply (i) tof*,
—a R b
| revs= [urove

Since(f*)* = f, (ii) follows immediately. O

5 Main Result

The main result of this article will be the following Duality Principle which asserts that
given certain results in theabla (resp. delta) calculus under certain hypotheses, one
can obtain the dual results by considering the corresponding dual hypotheses and the
dual conclusions in thdelta(resp.nablg) setting.

Given a statement in thdelta calculus (respnabla calculus), the corresponding
dual statement is obtained by replacing any object in the given statement by the corre-
sponding dual one.

Duality Principle For any statement true in the nabla (resp. delta) calculus in the time
scaleT there is an equivalent dual statement in the delta (resp.nabla) calculus for the
dual time scalér™.

In the next example we further illustrate how the Duality Principle applies.
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Example 5.1 (Integration by Parts). We show how the Duality Principle can be ap-
plied to prove the integration by parts formula.deltasettings the integration by parts
formula is given by the following identity:

/f(t)gA(t)Ath(b)g(b)—f(a)g(a)—/ FA97 ()AL, (5.1)

for all functionsf, g : [a,b] — R, with f,g € C',. Now, leth,j : [a,b] — R, with
h,j € C}, then, the dual functions*, j* : [-b, —a] — R are inC},. Next, we will
apply the identity (5.1) t&* and;*:

—a
~

[ 0G0 = w0 o - - - [ A0 A

b —b
The LHS of the last identity can be written as
b

/_ A WAL = - / T AL = / W) V()Y (5.2)

b —b a
becausdh jV)*(t) = h*()(GV)*(t) = —h*(£)(7*)2(¢). The second term in the RHS
can be written as

[ wraerwse= [(reevs - - [ 1T6revs 63

b a

because of the identitf(;*)?)*(s) = j”(s). To obtain the desired formula we substitute
the RHS of (5.3) in the integration by parts formula (5.1):

/ h(s) 57 () (s) = —h(a)j(a) + h(b)j(b) — / WY ()/7(s)Vs. (5.4)

It follows that the identity (5.4) is the integration by parts formula forlablasetting.

6 Application of the Duality Principle to the Calculus of
Variations on Time Scales

6.1 Euler—Lagrange Equation

We consider the Euler-Lagrange equation using the identity of Proposition 4.10. We
will use Bohner's results in [4] in thdeltasettings to prove similar results in thabla
settings as done in [1] (one could also do the vice versa). We review a few definitions.

Definition 6.1. A function f : [a,b] — R belongs to the spac€’, if the following

norm is finite: || f{|c: = [[fllo, + H[la}]( |£2(1)], where]||fl|o, = H[lag]( |f7(¢)|; also,
r te€la,b~ tela,blr

a functionf : [a,b] — R belongs to the spac€}, if the following norm is finite:

1 fllex, = | flloq + max [f¥(2)], where]| fllo; = max [f(£)].
te€la,blx te€la,b]x
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Definition 6.2. A function f is deltaregulated if the right-hand limif (¢+) exists (fi-
nite) at all right-dense pointse T and the left-hand limiff (t—) exists at all left-dense
pointst € T; f is regulated if the left-hand limif (¢+) exists (finite) at all left-dense
pointst € T and the right-hand limif (¢—) exists at all right-dense points= T.

Definition 6.3. A function f is deltapiecewise rd-continuous (we wrifee C,,.q ) if it

is regulated and if it is rd continuous at all, except possibly at finitely many, right-dense
pointst € T; f is nabla piecewise Id-continuous (we write € C,, ) if it is nabla
regulated and if it is Id continuous at all, except possibly at nitely many, left-dense
pointst € T.

Definition 6.4. f is deltapiecewise rd-continuously differentiable (we wrjtec C;Td)

if fisrd continuous angd® € Cyra; | is deltapiecewise |d-continuously differentiable
(we write f € C); ) if fis Id continuous ang™ € Clyq.

Definition 6.5. Assume the functio. : T x R x R — R is of classC? in the second
and third variable, andd continuous in the first variable. Then, is said to be a weak
(resp. strong) local minimum of the problem

Ly) = / Lty (). ()AL y(a) = o, y(b) = B, 6.1)

wherea, b € T, witha < b; o, f € R,andL : TxRxR — R, if yo(a) = «, yo(b) = 3,
andL(yo) < L(y) forally € C,y withy(a) = a, y(b) = 4 and||y —yol|c1, < (resp.
1y = yollo,r < &) for somes > 0.

We refer to the functiorl as to the Lagrangian for the above problem. Moreover,
if L = L(t,z,v), thenL,, L, represent, respectively, the partial derivatived.afith
respect ta, andz.

Definition 6.6. Assume the functio : T x R x R — R is of classC? in the second
and third variable, andd continuous in the first variable. Then, is said to be a weak
(strong) local minimum of the problem

c(h)_/ L(s,h?(s),hY (5))Vs h(c)=A, h(d)= B, (6.2)

wherec, d € T,withc < d; A, BeR,andL : TxR xR — R, if yo(c) = A, yo(d) =
B, andL(y,) < L(y) forally € C}, with y(c) = A, y(d) = B and||y — Yoller, <6
(resp.|ly — yollos < 9) for somed > 0.

Definition 6.7. Given a Lagrangiarl. : T x R x R — R, we define the dual (corre-
sponding) Lagrangiah* : T* x R x R — R by L*(s,z,v) = L(—s,z,—v) for all
(s,z,v) € T* x R x R.
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As a consequence of the definition of the dual Lagrangian and Proposition 4.10 we
have the following useful lemma.

Lemma 6.8. Given a LagrangiarL : [a,b] x R x R — R, then

—a

[ o= [ e, ) ) v

—b
for all functionsy € C,([a, b]).

The next theorem is a result by Bohner [4] in one dimension (the results we will
present can be obtained without this restriction, but we prefer one dimension to have an
immediate comparison with the results in [1]).

Theorem 6.9 (Euler—-Lagrange Necessary Condition in Delta Setting)if y, is a
(weak) local minimum of the variational problgi®.1), then the Euler—Lagrange equa-
tion

L (t,yg (8), 9 (1) = Lo(t, 55 (1), 9 (), forall ¢ € [a,b]",
holds.

Now, we will use Bohner’s theorem to prove the Euler—Lagrange equation in the
nabla context. We recall that the Euler—Lagrange equation innidigla context was
shown in [1]. Here we will reprove it using our technique. (Also, see Remark 6.11.)

Theorem 6.10 (Euler-Lagrange Necessary Condition in Nabla Setting)f 7, is a
local (weak) minimum for the variational problgi.2), then the Euler—Lagrange equa-
tion

La(s, (40)"(s), (50) ¥ (5)) = (Lw) " (5, (50)"(5), (%0) ¥ (5)) forall s € [c,d],,
holds.

Proof. This theorem is essentially a corollary of Theorem 6.9. Sipade a local mini-
mum for (6.2), it follows from Lemma 6.8 that; is local minimum for the variational
problem

@)= [ dCL*a,g&(t),gA(t))At, g—c)= A, g(~d)=B, (63)

whereg € C!.. The variational problem (6.3) is the same as (6.1) for the Lagrangian
L* (witha = —d, b = —c, « = B and = A). Hence, we can apply Theorem 6.9. The
Euler-Lagrange equation for the Lagrangfanis given by

(LA, )7 (1), ()2 (1) = Lit, )7 (1), ()2 (1)), forall t e [~d,—".
(6.4)
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Our goal is now to rewrite (6.4) for the Lagrangian|t is easy to check that

Li(t,z,v) = —Ly(—t,z,—v), and L(t,r,v) = L.(—t,z,—v),
whereL,, is the partial derivative of with respect to the third variable. Let us substitute
x by (73)7 (1), andv by ()2 (1), in the previous identities. We get

Li(t, (55)7 (1), (552 (1)) = —Lu(—t, (50)° (1), (50)¥ (—1)),

and

Lt (55)° (1), @) (1) = Lo(—t, (50)"(—1)., (50) ¥ (—1)).
From Lemma 4.6, it follows that
At =p¥(~t) forall te[—d —d",

where

g(t) = Li(t, ()7 (1), @)2(1) and p(—t) = Lu(~t, (7o) (—1), (7o) ¥ (~1))-

Next, lets € [, d],, and set-t = s. Then by (6.4),

pY(s) = La(s, () (5), (70)" (), (6.5)

and, finally, revealing the definition @f from (6.5) we obtain the Euler—Lagrange equa-
tion in thenablasetting:

Lo (s, (50)" (), (50) " (5)) = (Lw)™ (5, (50)"(5), (50)" (s)) forall s € [c,d]..

The proof is complete. O

Remark6.11 Theorem 6.10 states the same result as the main theorem proven in [1].
The only difference is the interval of points for which the Euler—Lagrange equation
holds. In fact, since in [1] the interval of integration for the Lagrangidpiéz)), p(b)],

it follows from our results that the Euler—Lagrange equation has to hold in the interval
[*(a)), p(b)]. and not[p(a)), ] as in [1]. This claim can be also justified by noticing
that, in order of applying [1, Lemma 2.1], the test functions have to vanish at the limit
points of integration. Another observation about such interval was pointed out in [6].

Remark6.12 Theorem 6.10 can be easily generalized to the higher-order results of [12]
by applying our Duality Principle to the results in [7].
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6.2 Weierstrass Necessary Condition on Time Scales

We first review a few definitions. Let be a Lagrangian. LeE : [a,b]" x R® — R be
the function defined as

E(t,x,r,q) = L(t,x,q) — L(t,z,r) — (¢ — r)L.(t, 2, 7).

This functionF is called the Weierstrass excess functior.of
The Welerstrass necessary optimality condition on time scales was proven in the
deltasetting in [11]. This theorem is stated as follows.

Theorem 6.13 (Weierstrass Necessary Optimality Condition with Delta Setting).
LetT be a time scaleg andb € T, a < b . Assume that the functiaia(¢, z, ) in (6.1)
satisfies the following condition:

p)L(t x,yry + (L= y)r2) < p)yL(E,z,m1) + p(t) (1 =) L(E,x,1m),  (6.6)

for each (t,z) € [a,b]" x Rand all r;,r, € R,y € [0,1]. Letz be a piecewise
continuous function. If is a strong local minimum fo6.1), then

E[t,7°(t),z%(t),q] > 0 forall t & [a,b]" and ¢ € R,

where we replace” (t) by 2 (t—) and z°(t+) at finitely many points wherez* (t)
does not exist.

Let £ be the Weierstrass excess function.of

Theorem 6.14 (Weierstrass Necessary Optimality Condition with Nabla Setting).
LetT be a time scaleg andb € T, a < b . Assume that the functiab(¢, =, r) in (6.2)
satisfies the following condition:

v(t)L(t,z,yry + (1 —y)re) < v(t)yL(t, z, 7)) + v(t)(1 — ) L(t, x,73), (6.7)

for each(t,z) € [a,b], x Rand allr;,r, € R,y € [0,1]. Letz be a piecewise
continuous function. I is a strong local minimum foK6.2), then

E[t,z°(t),z" (t),q] > 0 forall t&[a,b],. and ¢ € R

where we replace” (t) by zV (t—) and z" (t+) at finitely many pointg wherez" (t)
does not exist.

Proof. Let L* be the dual Lagrangian di. It is easy to prove (similarly as we did in
Theorem 6.10, although herds a strong minimum), that* is a strong local minimum
for (6.1). Then, (6.7) can be written on the dual time s@las

ﬂ(S)L*(S’ T, =" — (1 - V)TZ) S [L(S)’}/E*(S, xz, _Tl) + [L(S)(l - V)E*(& x, _T2>’
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for each(s,z) € [-b, —a]®” x Rand allr;,r, € R,y € [0, 1]. We recognize that the last
inequality is the same as (6.6) in Theorem 6.13 for the Lagrangiakhlence, we apply
Theorem 6.13,
E*[s, (%) (s), (2)2(s),q] > 0 forall s € [-b,—a]* and ¢ € R,
whereE* is the Weierstrass excess functionigf Also, we notice that
E*[s, (7%)°(s), (7)2(s). q] = E[—s, (3")°(s), —(7)2(s), ~],
whereFE is the Weierstrass excess function/ofFinally,

E[t,z"(t),zV (t),—q] >0 forall ¢ < [a,b], andall g € R,

because A
(%)% (s) = 2°(—s), and (z*)%(s) = —z"(—s).

We observe that, the fact that we can replace

TV (t)
by
zV(t—) and zV(t+) atfinitely many pointst,
where
Y (t)
does not exist, follows as well from Theorem 6.13. OJ
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Appendix: Table of Dual Objects

Based on the above definitions, remarks and lemmas we summarize in Table 1 for each
“object” its dual one. Naturally, Table 1 may be extended to more objects.
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Table 1: Table of Dual Objects
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Object Corresponding dual object
T T
f:T—R T =R
T >R f:T—>R

to right-dense (left-dense)

—t, left-dense (right-dense )

to right-scattered (left-scattered)

—t, left-scattered (right-scattered)

~

o v (= 1), fi(= v*)
a,p p(=—0%),6(= —p")
(Y —(f")¥ (~to)
17 (to) (F)% (~to)
12 (to) ~((f)%) (to)
(F2)(~to) —((£9)7)(~t0))

feCa(felCy)

[ € Cuy(fr e Ch)

feCly(fely

f* eclld (f* e Cﬁd)

f € Oprd ( f € C1pld)

[ € Cpa (f € Chra)

VS C;rd (f € C;ld)

fre O;ld( fre O;rd)

/abf(t)At

/ ; FH(s)Vs

L:TxR*—R,L(tz,v)

L*: T* x R? = R, L*(s, z,w)(= L(—s,z, —w))
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