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Abstract

We consider the three-point even order boundary value pmolgn time scales,
n (2n)
(=)™ (1) = f(ty(1), t € la,d,

(24) (2i+1) (24)
aiy® " (0) 4 Biay® T (a) =y (a),
(24) (24) .
Yirry™ (b)) =y~ (0(e), 0<i<n—1,

wheren > 1, a < b < o(c), o(c) is right-dense and : [a,0(c)] x R — R is
continuous. First, we establish the existence of at leasethositive solutions by
using the well-known Leggett—Williams fixed point theoreve also establish the
existence of at lea®tn — 1 positive solutions for arbitrary positive integer.
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1 Introduction

Atime scal€T is any nonempty closed subsetRfHilger [15] initially introduced time
scales with the twin goals of unifying the continuous anadwdite calculus and extending
the results to a dynamic calculus for general time scalemeSather earlier papers in
this area include Agarwal and Bohner [1], Anderson [3], Avand Anderson [5], Erbe
and Peterson [12]. For an excellent introduction to thealarea of dynamic equations
on time scales, we refer to the recent text books by BohnePaterson [7, 8]. In this
paper, we establish the existence of multiple positivetgmis to even order three-point
boundary value problem on time scales,

(—1)"y2" () = f(t,y(t), t € [a.d], (1.1)
Oéi+1yA(2i)(b) + @‘H?JN%H)(@) = yA(Qi)(a)a (1.2)
Yipry® T (0) =2 (0(c)), 0<i<n-—1, (1.3)

wheren > 1,a < b < o(c), o(c) isright-dense and : [a, o(c)] x R — R is continuous
and we assume that the coefficientss;, ; are real and satisfy the following condition,
called condition (A):

o(c) —yb+ (vi —1)(a— )
o(c)—b

OSO&Z'< ) ﬂ1207

ole) —a+fi

foreach 1 <i<n.
b—a—i—@- =t=n

0<y <

The study of the existence of positive solutions of the eveleioboundary value prob-
lems (BVPs) arises in a variety of different areas of apphethematics and physics.
In the modeling of nonlinear diffusion via nonlinear sowgcermal ignition of gases,
and in chemical concentrates in biological problem [13]thase applied settings, only
positive solutions are meaningful. The existence of pesisiolutions are studied by
many authors. To mention a few, we list some papers, Eloe andlétson [9-11], Erbe
and Wang [13] for at least one positive solution and then Asale [2], Anderson and
Avery [4], Avery and Peterson [6], Henderson and Kaufmar far multiple positive
solutions.

This paper is organized as follows. In Section 2, we stateespraliminaries on
time scales. In Section 3, we state and prove some lemmad$ \@hécneeded in our
main results. In Section 4, we establish the existence @feat three positive solutions
of the BVP (1.1)—(1.3) by using the Leggett—Williams fixedrpdheorem. In Section
5, we establish the existence of at Ieéast— 1 positive solutions of the BVP (1.1)—(1.3)
for arbitrary positive integem.
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2 Preliminaries

By an interval we mean the intersection of the real intenvi#th\& given time scale. The
time scaleél’ may be connected or disconnected. To overcome this topabdgjificulty,
the concept of jump operators is introduced in the followivay. The operators and
pfromT to T, defined byo(t) = inf{s € T : s >t} andp(t) = sup{s € T : s < t}
are called jump operators. # is bounded above andis bounded below, then we
defineo(max T) = max T andp(min T) = min T. These operators allow us to classify
the points of time scal&. A pointt € T is said to be right-dense i#(t) = ¢, left-
dense ifp(t) = t, right-scattered ilo(t) > t, left-scattered ifp(t) < ¢, isolated if
p(t) < t < o(t) and dense ip(t) = t = o(t). The setl” which is derived from the
time scal€T as follows

. T\(p(sup T),sup T|] ifsupT < oo
T = :
T if supT = oo.

Finally, if f : T — R is a function, then we define the functigii : T — R by
fo(t) = f(o(t)) forall t € T.

Definition 2.1. Assumef : T — Ris afunction and let € T*. Then we defing*(¢)
to be the number (provided it exists) with the property thaeg anye > 0, there exists
a neighborhood’ of ¢ such that

[f(a() = f(s)] = FA)[o(t) = s]| < elo(t) —s]
forall s € U. We call f*(t) the delta (or Hilgerferivativeof f att.

If f is delta differentiable for every € T*, then we say thaf : T — R is delta
differentiable orfT. If f and g are two delta differentiable functionsiathenfg is delta

differentiable at and(fg¢)>(t) = f(t)g™(t) + f2(t)g° (t) = f2(1)g(t) + £7(£) g™ (t).

Definition 2.2. A function f : T — R is calledregulatedprovided its right-sided limits
exist (finite) at all right-dense points i and its left-sided limits exist (finite) at all
left-dense points iff.

Definition 2.3. Assumef : T — R is a regulated function. Any functiofR” which is
pre-differentiable with region of differentiatio® such thatF">(t) = f(t) holds for all

t € Dis called gore-antiderivativeof f. We define the indefinite integral of a regulated
function f by

/f(t)At _ F()+C,
whereC' is an arbitrary constant anid is a pre-antiderivative of.

Definition 2.4. Let 5 be a real Banach space. A nonempty closed convexisatalled
aconeof g if it satisfies the following conditions:
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Q). uw € 8,0 >0, impliesou € k,
(2). u € Kk, —u € Kk impliesu = 0.

Definition 2.5. Let X and Y be Banach spaces afil: X — Y. T is said to be
completely continuoy$f 7" is continuous, and for each bounded sequengg C X,
{Tz,} has a convergent subsequence.

3 Green’s Function and Bounds

To state and prove the main results of this paper, we needtlmsving lemmas. Let
G,(t, s) be Green'’s function for the boundary value problems,

—y2 (1) =0, t€[a,d, (3.1)
a;y(b) + ﬂiyA(a) = y(a), (3.2)
Yiy(b) = y(o(c)), (3.3)

for 1 < i < n. First, we need a few results on the related second order gensmus
boundary value problem (3.1)—(3.3).

homogeneous boundary value probléril)}~(3.3) has only the trivial solution if and
only ifd; # 0.

Lemma 3.2. For 1 < i < n, Green'’s functiorG;(t, s) for the homogeneous boundary
value problen(3.1)+3.3), is given by

a(t,s), a<o(s)<t<b<o(c)

L(ts), a<t<s<b<olc)

t,s), a<t<b<s<o(c)

Gi(t,s) = (3.4)

1 Gi,(t,s), a<b<o(s)<t<o(c)
Gi(t, S)te[b,a( ) = d_ { G%(t, S), a<b<t<s< O'(C)
\ Pl Gty s), a<o(s)<b<t<ole),
where

Gi(t,s) = [n(t=0b)+o(c)—t(a(s) + B —a),
Gi(t,s) = [vilo(s) =b)+o(c) —a(s)](t + Fi — a) + ai(b — o (c))(t — a(s)),
Giltys) = [H1—ap) + b+ i — al(o(c) — o(5)),
Gi,(t,s) = [o(s)(1 —ay) +ab+ B —al(o(c) —t) +7(b—a+ 5;)(t —oa(s)),
Gi(t,s) = [t(1 —ay) +ab+ F; —al(o(c) — o(s)),
Gig(t,s) = [n(t=0b)+o(c) —t)(a(s) + B — a).



Existence of Multiple Positive Solutions 223

Figure 3.1: Green’s function
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The graph in Figure 3.1 demonstrates that Green’s funcbor(3.1)—(3.3) should
be taken in the form of (3.4). Heree [a, ¢|.

Lemma 3.3. Assume that the conditiqid) is satisfied. Then, for < i < n, Green’s
functionG, (¢, s) of the BVP(3.1)+(3.3) satisfies the inequality

(t—a)
Gi(t,s) > ———Gi(o(c),s), (t,s) € (a,0(c)) X (a,c).
(t:9) 2 (5= G Gil(9): ), (£:5) € (,0(0)  (a0)
Proof. Green'’s functiorG;(t, s) is given by (3.4) in six different cases, and in each case
we prove the inequality.
() Let o(s) < t and fixs € [a, b]. Then

Gilt, ) = - {bult =) + o(6) — t)(o(s) + i — )}

7

Gi(tys) - [’%(t—b)—l—a(c)—t] t—a | O'(C)—a -
and Gi(o(c),s) vi(o(c) —b) = o(c) —a for0 < < T Since
i Lo(c)—a+ B o(c)—a
the inequality b—at < holds, we have
Gi(t,s) > ¢ Gi(o(c),s) for 0<~ < M,

b—a-+ 62
Now leto(s) < t ands € [b, ¢|. Then
Gi(t,s) =[o(s)(1 — ;) + a;b+ B; — al(o(c) —t) + v:(b—a+ 5;)(t — a(s))
= Gi(o(c),s) + dii{[(% — D(a—=8) + (1 = ai)a(s) + bles —v)](o(c) = )}



224 K. R. Prasad, P. Muraliand S. N. Rao

Since(y; — 1)(a — 6;) + (1 — a;)o(s) + b(a; — ;) > 0, we get

t—a

Gi(o(c), s) < Gi(t, s).

olc)—a

(i) Let t < sands € [a,b]. Then

Gt ) = 7 {Pu(o(s) — b) + () — o(s)](t + B — a) + au(b — o(e)) (¢ — o (s))).

(2

o(c)—a+ G
b—a—l—ﬁi

a;(o(s) —t)(b—a+ 5;)(o(c) —a) + Bi(o(c) —t)(o(s) —a+ 5;) >0,

Using the inequalitie8 < v; < and

we obtain
Gi(t,s) _ [vilo(s) =b) +o(c) —o(s)l(t + i — a) + ai(b— o(c))(t — a(s))
Gi(o(c),s) Yi(o(c) = b)(o(s) + B — a)

(o(s)+ B —a)t+ 0 —a)+ ai(o(s) —t)(b—a+ ;)
(o(s) + Bi —a)(o(c) + Bi — a)

>

t—a

o(c)—a
Now lett < s ands € [b, ¢]. Then

Gi(t,s) = [t(1 — ;) + a;b+ B; — al(o(c) — o(s)).
Since(t — a)d; + (o(c) — t)(a; (b — a) + 5;) > 0 holds, we have

Gi(t, s) t(l—a)+ab+p5i—a t—a

Gio(c)s)  mb—a+B) olo—a

This completes the proof. O

Lemma 3.4. Assume that the conditiqA\) is satisfied. Then, for < ¢ < n, Green’s
functionG, (¢, s) given by(3.4) possesses the property

Gi(t,s) >0, (t,s) € (a,0(c)) X (a,c).

Proof. By Lemma 3.3, it suffices to show théf;(c(c),s) > 0 for s € (a,c). For
1
s € (a,b], Gi(o(c),s) = E%(a(c) —b)(o(s) + i —a) > 0, and fors € [b,c),

Gi(o(c), s) = dii%-(b —a+B)(0(c) — a(s)) > 0. 0
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Lemma 3.5. Assume that the conditiqid) is satisfied. Then, for < i < n, Green’s
functionG,(t, s) given by(3.4) satisfies

1

G;(t,s) < max {Gi(@> s), Gi(a(s), s), d;

w—a+@Xd@—aw»}

0<v <1, (ts)€la,o(c)] X [a,c] and
Gi(t,s) < max{G;(o(c), s),Gi(o(s),s)}, (t,s) € [a,0(c)] X [a, ],

ol —a+fi
b—a-+ 62
Proof. We prove the inequality in each case of Green'’s function.

(i) Leto(s) < t < bands € [a,b]. HereG(t, s) is nonincreasing imif 0 < ~; < 1,
so thatGi(t, s) < Gi(o(s),s). If 1 < v < %
nondecreasing inandG;(t, s) < G;(o(c),s). Now Ietc;(s) <t < o(c)and fixs €
b, c]. HereG,(t, s) is nonincreasing i if 0 < ~; < 1, so thatG;(t, s) < Gi(a(s), s).
Letr; ¢ (1M) Soa; < 1. If s € [b, nlb—atf)—aib—fita

b—a + ﬁ, 1-— (67
then G;(t, s) is nondecreasing in and G;(t,s) < G;(c(c),s). In the other case, if
s € (b~ a+ﬁf>__a%b — b +a,c], then G;(t, s) is nonincreasing irt and we
haveG,(t,s) < Gi(o(s), s).
(i) Let a < t < sandfixs € [a,b]. ThenG,(t, s) is increasing int for all ¢ €

la, s, for any~; € <0,% . ThereforeG;(t,s) < G;(o(s),s). Now let

a <t<s<o()andfixs € [bc]. Lety;, € (0,1]. If a; € (0,1), thenG,(t,s) is
nondecreasing in andG;(t,s) < G;(o(s),s). Fora; > 1, G;(t, s) is nonincreasing
intandG;(t,s) < Gi(a,s). If a; = 1, thenG,(t, s) is constant int and G;(t,s) =
1 J(C) —a-+ ﬁz
—(b— ; - CIfl <
7= et B)o(0) = o) 1 < o < 52
G, (t, s) is nondecreasing ify so that&;(t, s) < G;(o(s), s). O
Lemma 3.6. Assume that the conditigh) holds. For fixeds € [a, ], and1 < i < n,
Green’s functiorG;(t, s) in (3.4) satisfies

1<y <

, however, the function is

, then we gety; < 1. Thus

min G;(t,s) > m; || Gi(-,s) ||, 3.5
i Gilt.s) = mi | Gi19) | (35)
where
i(o(c) —b) %i(b—a+ 5)
I olc)—a+y(a—b) o)l —a;)+ b+ 5 —a’
M= MY b —a+ 3) Vi b—a+ 3 ’

ai(b—a)+ 5, b—a+ ;" o(c) —a+ G
and|| . || is defined by| z ||= max{| z(¢) |: t € [a,0(c)]}.
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Proof. First consider the cage< ~; < 1. From Lemma 3.5,
1
| Gil15) = max { Gita, ) Gilo(s),5), 30— a + A)ale) — a(5) }.
By using the boundary condition (3.3), we get(b, s) > G;(o(c), s), So that
min G,(t,s) = Gi(o(c), s).

telb,o(c)]
Fors € [a, b] we have from cases in (3.4) that
ni(o(e) = b)
) > : .
GZ(O'(C), 3) - O'(C) —a + ’Yz(a _ b) G2(0(8>7 S)
Lets € [b, ¢]. If a; < 1, then the inequality
Yilb—a+ )

Gilo(e):8) 2 i e T o+ B —a i 0(8)9)
holds. Ifa; > 1, then we have
Gilole),s) = 20=aH8) oy

~aib—a)+ B
If o; = 1, then we get
Vi 1
Gi(o(c),s) > mz(b—@Jr@)(U(C) —o(s)).
o(c) —a—+ G

—. By the boundary condition (3.3),

Next consider the case whén< ~; <
b—a+ 5

we have
min G,(t,s) = Gi(b, s).

telb,o(c)]
Using Lemma 3.5, we have
| Gi(-; s) |= max{Gi(o(c), s), Gi(o(s), s)}.

By using (3.4) and the cases in the proof of Lemma 3.5, we sde th

(b—a+p) Yilb—a+f) —aib—Fi+a
Gi(b,s) > ol —axt 6062(0(0), s) for s € [a, o )
and
(b —a-+ 62)
Cilbs) 2 = o) a1 B —a” )9
for se {%(b iy ﬁli)__oféib — At a’ c} )

This completes the proof. O
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Lemma 3.7. Assume that the conditiqid) is satisfied, and le;(t, s) be as in(3.4).
Let us defindd, (t, s) = G1(t, s), and recursively define

;(t,s) / _1(t,7)Gj(r, s)Ar (3.6)

for2 < j < n. ThenH,(t, s) is Green’s function for the corresponding homogeneous
problem(1.1)+1.3).

Lemma 3.8. Assume that the conditiqA) holds. If we define

n—1 n—1
K=K L=]]mL;
j=1 Jj=1

then Green’s functioi/,, (¢, s) in Lemma 3.7 satisfies
0 < Hy(t,s) < K || Gul-s) |, (t:5) € [a,a(c)] x [a, ]

and
Hy(t,s) 2 mnL || Gal-,8) [, (¢5) € [b,o(c)] X [a, ],

wherem,, is given in Lemma 3.6,
o(c)
K, = / | G(-,8) || As >0, 1<j<mn,

and “
sz/ 1Gy(8) | As >0, 1<j<n.
b

Proof. We use induction on. First, forn = 1, from Lemma 3.5, the conclusion holds.
Next, we assume that this conclusion holds #ior= k. In order to prove that this
conclusion holds fon = £ + 1, we use Lemma 3.6 and Lemma 3.7. O

4 Existence of at Least Three Positive Solutions

In this section, we establish the existence of at least {hosédive solutions for the even
order three point boundary value problem (1.1)—(1.3), bypgishe Leggett—Williams
fixed point theorem.

Let £ be a real Banach space with coRe A mapsS : P — [0, 00) is said to be a
nonnegative continuous concave functionalfif S is continuous and

S(Ax 4+ (1 = XN)y) > AS(x) + (1 — X)S(y)



228 K. R. Prasad, P. Muraliand S. N. Rao

forall z,y € Pand\ € [0, 1]. Leta and( be two numbers such that< « < 3, and
let S be a nonnegative continuous concave functionaPolVe define the convex sets

Po={yeP:yl<a}

and
P(S,a,8)={yeP:a<Sy),|yl< B}

Theorem 4.1 (Leggett—Williams fixed point theorem)etT : P,, — P,, be com-
pletely continuous and' be a nonnegative continuous concave functionalFosuch
thatS(y) <|| v || for all y € P,,. Suppose that there exi$t< d < a; < ay < az such
that

(i) {y € P(S,a1,a2) : S(y) > a1} # 0 andS(Ty) > a, fory € P(S,ay, as);
(i) || Ty < dforfly < d;
(i) S(Ty) > ay fory € P(S, a1, a3) with || Ty ||> as.
ThenT has at least three fixed poinis, i», ys in P,, satisfying
lyill<d, ar<S(), [lysl>d, Slys) <ar

Theorem 4.2. Assume that there exist numbexs a;, andas with 0 < ay < a1 <
a
Ml < a, such that

Ft,y() < ﬁ for ¢ € [a, o(c)] andy € [0, ag), (4.1)
Flty(t) > #&1% fort € [b, o(c)] andy € [al, %] , 4.2)
Fty(t) < ﬁ for t € [a, o(c)] andy € [0, as). (4.3)

Then the BVR1.1)«(1.3)has at least three positive solutions, where

o my L
M = '
m 175
J=1

Proof. Let the Banach spadé = C|[a, o(c)] be equipped with the norm

= max t)|.
v = max |y(t))

We denote
P={yeFE:y(t)>0,teclao(c)}
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Then, itis obvious thaP is a cone inE. Fory € P, we define
S(y) = min, Iy( ) |

teb,o

and
(Ty)(t / Ho(t,5)f (5, 4(s))As, £ € [a, 0(c)].

It is easy to check tha$ is a nonnegative continuous concave functionalFowith
S(y) <|| y || fory € P and thatT’ : P — P is completely continuous, and fixed
points of T" are solutions of the BVP (1.1)—(1.3). First, we prove thiathére exists a

positive number such thatf (¢, y(t)) < ﬁ fort € [a,0(c)] andy € [0, ], then
o . j=1+%J
T : P, — P,.Indeed, ify € P,, then fort € [a,o(c)],
o(c)
(Ty)(t) = H,(t,5)f(s,y(s))As

a

r /U(c) ( )
< = H,(t,s)As
Hj:l Kj a

o(c)
T
< K [ Gl ds =
Hj:1K' a

Thus,|| T'y || < r, thatis, Ty € P,.. Hence, we have shown that if (4.1) and (4.3) hold,
thenT mapsP,, into P,, andP,, into P,,. Next, we show that

1 .
{yeP(S,al,M> . S(y )>&1} )
andS(Ty) > a, forally € P <S ai, M) In fact, the constant function

%E {y€P<S>al’%) :S(y)>&1}.

Moreover, fory € P <S ai, X/l) we have

— > yl[>y(t) > min y(t)=S(y) > a
telb,o(c)]
forall t € [b,0(c)]. Thus, in view of (4.2) we see that
S(T :mm/ H,(t,s)f(s,y(s))As

teb,o(c))

> mm/ Hy(t,s)f(s,y(s))As

telb,o(c))

>7 L/ G, As=a
T, NGl A=a
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as required. Finally, we show thatjfe P(S,ay,a2) and|| Ty ||> %, thenS(Ty) >

a;. To see this, we suppose that P(S,a;,a2) and|| Ty ||> %. Then, by Lemma
3.8, we have
o(c)
S(Ty) = min H,(t,s)f(s,y(s))As

telb,o(c)] J,

o(c)
> min m.L / | Gule,s) || £(5,(s))As

T teb,o(e)]
o(c)
2L [ Gules) | Fsp()s

forallt € [a,0(c)]. Thus

o(c) an
H,(t,8)f(s,y(s))As = | Ty ||>

myL
Ty) > ——
S(Ty) 2 = nax

a

To sum up, all the hypotheses of Theorem 4.1 are satisfiedcdeihas at least three
fixed points, that is, the BVP (1.1)—(1.3) has at least thesatpre solutionsy;, y» and
y3 such that

< ay, < i t), > ay, i t) < a.
|y l[<ao, a teﬁi?c)]”() | ys [|> ao telfilf(‘cny‘”’() ay

This completes the proof. O

5 Existence of Multiple Positive Solutions

In this section, we establish the existence of at Ieast— 1 positive solutions for the
BVP (1.1)—(1.3), by using induction an.

Theorem 5.1. Letm be an arbitrary positive integer. Assume that there exishibers
ai,l §i§m,andbj,1§j §m—1,WIth

b b o
O<a1<b1<M1<a2<b2<ﬁ2<...<am,1<bm,1< Ml<am
such that
f(ty(t)) < # fort € [a,0(c)]andy € [0,a;], 1 <i<m (5.1)
Hj:lKj
and
. b,
ty(t ——2 _ _forteb d b, -2, . 1<j<m-—1. (5.2
f(’y(>>>mnH?:1Lj or 6[70(6)]any€|:J M:|7 _J_m ( )

Then the BVR1.1)(1.3) has at leasm — 1 positive solutions irP,_.
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Proof. We use induction om. First, form = 1, we know from (5.1) that” : P,, —
P,,. Then it follows from Schauder’s fixed point theorem that B\&P (1.1)—(1.3) has
at least one positive solution iR,,. Next, we assume that this conclusion holds for
m = k. In order to prove that this conclusion holds far= k + 1, we suppose that
there exist numbersg; (1 < i < k+ 1) andb;(1 < j < k) with

by by by,
0<a <bhi < —=<a<b<—=<..<a<b, <—<ag

M M M
such that
flt,y(t)) < HL fort € [a,0(c)]andy € [0,a,], 1 <i < k+1 (5.3)
Hj:l KJ’
and
) b
-3 . T < i< k. .
ft,y(t)) > — H?ZI I fort € [b,o(c)] andy € [bj M] , 1< <k (5.4)

By assumption, the BVP (1.1)—(1.3) has at le2kt— 1 positive solutionsu;, i =
1,2,...,2k — 1, in P,,. Atthe same time, it follows from Theorem 4.2, (5.3) and
(5.4) that the BVP (1.1)—(1.3) has at least three positivet®ms v, v andw in ?ak+l

such that| u ||< ag, by < min v(t), || w |[|> ax, min w(t) < by. Obviously,v
telb,o(c)] telb,o(c)]

andw are different fromu;, : = 1,2,...,2k — 1. Therefbre, the BVP(1.1)—(1.3) has at
least2k + 1 positive solutions inP,, , , which shows that this conclusion also holds for
m=k+1. 0J
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