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1 Introduction

The celebrated Gronwall inequality [11] states that @nd f are nonnegative continu-
ous functions on the intervat, b] satisfying

u(t)§c+/f(s)u(s)ds, te[a,b),

for some constant > 0, then

u(t) < cexp </t f(s)ds), teab. (1.1)

Since the inequality (1.1) provides an explicit bound to the unknown funetiand

hence furnishes a handy tool in the study of solutions of differential equations. Because
of its fundamental importance, several generalizations and analogous results of the in-
equality (1.1) have been established over years [1-6,9, 14,16, 19]. Such generalizations
are, in general, referred to as Gronwall type inequalities [1,2,6,8,13,19]. These inequal-
ities provide necessary tools in the study of the theory of differential equations, integral
equations, and inequalities of various types. Also in 1969, Sugiyama [20] proved the
following most precise and complete discrete analogue of the well known Gronwall in-
tegral inequality [11]: Let(t) andb(t) be nonnegative functions defined B3 and

¢ > 0 be a constant, wheifé, denotes the set of nonnegative integers. If

fort € Ny, then

u(t) < 01:[[1 +b(s)] < cexp (Zb(s))

for t € Ny. This result has evoked considerable interest in the literature and many gen-
eralizations and extensions of this inequality have been established, which find appli-
cations in the study of various classes of finite difference equations and sum-difference
equations.

In addition, many authors [1, 2,7, 10, 12,15, 17, 19] have established several other
very useful Gronwall-like discrete inequalities. Among these inequalities, the following
one (Theorem 1.1 below) due to Pachpatte [15] needs specific mention. It is useful in
the study of boundedness of certain difference equations.

Theorem 1.1 (Pachpatte [15]).Let u(), a(t), b(t) and p(t) be nonnegative functions
defined oYy and
t—1
u(t) < alt) +p(t) Y b(s)u(s)

s=0
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fort € Ny, then

fort € N,.

Pachpatte’s inequality prompted researchers to devote considerable time for its gen-
eralizations and consequent applications [1, 2,7, 10, 19]. For instance, Dragomir estab-
lished the following generalization (Theorem 1.2 below) of Pachpatte’s inequality in the
process of establishing a connection between extended and used considerably in various
contexts [10].

Theorem 1.2 (Dragomir [10]). Letw(t), a(t), b(t) be nonnegative functions defined for
t € Ny. Let the functiorl. : Ny x R, — R, satisfies the condition

0 S L(ta .1') - L(tvy) S k<t7y)<x - y)

fort € Ny andz > y > 0, wherek(t,r) is a nonnegative function defined foe N,
andr € R,. If

fort € Ny, then
u(t) <a(t)+b(t) » L(s,a(s)) H 1+ k(o,a(0))b(o)]

fort € N,.

More recently, Pachpatte established following useful inequality (Theorem 1.3 be-
low) inspired by the discrete version of Bihari's inequality [4], which is handy in the
study of the global existence of solutions to certain finite difference equations and sum-
difference equations.

Theorem 1.3 (Pachpatte [18]).Let u(t),a(t),b(t) be nonnegative functions defined
for t € Ny andc be a nonnegative constant. Lgtu) be a continuous nondecreasing
function defined ofR ;. with g(u) > 0 for u > 0. If

fort € Ny, thenfor0 <t < ty,t,t; € Ny,

ult) <97 |2p(0) + 3 6o,

s=0
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where -
p(t) =c+ Y _b(s)
s=0
fort € Ny,
" ds
Qr :/ —, 1 >0,
=) 4

ro > 0is arbitrary, Q! is a inverse function af andt; € N, be chosen so that

t—1

Qp(t)) + > _a(s) € Dom(Q71).

s=0
forall t € Ny such thatd) <t < t;.

The main aim of the present paper is to establish some nonlinear retarded inequali-
ties which extend the foregoing theorems. We also illustrate the use/application of these
inequalities.

2 Main Results

For discrete inequalities it is customary that the functions occurring in them are defined
on countable sets, which can, without loss of generality, be assumed to be subsets of
the setZ of integers. LefR denote the set of real numbers a@Rd = [0, o) be the

given subset oR. Leto,f € R,a < 3, Ze ={n € Z :n > a}, Zing ={n€Z:

5 8
a <n < B} Letd x(j) and] ] z(j) be the sum and the product.efj), j € Zia,g,
= j=a

a—1 a—1
respectively and assume that z(j) = 0, [ [ 2(j) = 1. Denote byC"(M, N) the class
Jj=a j=a
of all i—times continuously differentiable functions defined on theléab the setV for
i=1,2,--- andC"(M, N) = C(M, N). Further, denote by ()M, N) the collection of
functions defined on the séf to the setV. As usual, letx be a real-valued function on
Zy.5 and the difference operatdx onu be defined as

Au(n) =u(n+1) —u(n), n€Zygg .

Also assume that all the sums and products involved throughout the discussion exist on
the respective domains of their definitions.

Theorem 2.1. Letb, f;,9; € F(Zo,R,), i = 1,...,n with b nondecreasing and let
o € F(Zy,Z) be nondecreasing with(t) < t and —oo < a = inf{o(s) : s € Zy}.
Suppose thay > 0 is a constanty € C'(R,,R,) is an increasing function with



Retarded Discrete Inequalities 5

p(c0) = oo onR,, andw(u) is a nondecreasing continuous function foe R, with
¥(u) > 0foru > 0. Ifu € F(Z,,R;) and

—_

n—

p(u )+ > ulo(s)fils)(ulo(s) + gi(s)]

i=1 s

Il
o

fort € I, then
utn) < {6 |0 (G0 + Zzgu) +sz<>)} b ey

forn € Zjy o), where

" ds
G(r) = /W’ r > >0,

/ 7>70>O
) )
7’01/) 1

G, Q! denote the inverse functions@f (2, respectively and > 0 is so chosen that

n—1 1

Q(G(b(n)) + iZgi(s > + ZZL € Dom(Q™).

s=0 i=1 s=0 i=1

Proof. Lete > 0 andN € Z,. Define a functior: : Zyp n — R, by

z(n) = e+ b(N) + Z > ul(a()fils)v(ulo(s))) + gis)):

Clearly, z(n) is nondecreasingy(n) < ¢~ '(z(n)) for n € Z nj andz(0) = € + b(N).
We get

l

Az(n) = Zuq(d(ﬂ))[ﬁ(ﬂ)tﬁ(ﬂ(a(n)))+gi(n)]

< e N Y [filtn)e(e™! (2(n) + gi(n)].

Using the monotonicity of~! andz, we deduce
[~ (2(n))]* = [~ (2(0)]7 = [~ (e + B(N))]? > 0.
That is
A < S e ) + i) @2)
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On the other hand, by the mean value theorem, we have
AG(z(n)) =G(z(n+1)) — G(2(n)) = G'(§)Az(n) (2.3)

for someg € [z(n), z(n + 1)]. From (2.2), (2.3) and using the functiéh we obtain

l

AG(2(n)) <> [fi(n)(e ! (2(n)) + gi(n)). (2.4)

=1

Settingn = s in the inequality (2.4), summing up, we get

n—1 n—1 1
> AG((s >l () + gi(s)]. (2.5)
From the inequality (2.5), we observe that
n—1 1
G(z(n)) < Gle+bN)+> > [fils (5))) + gi(s)]

s=0 i=1
N—-1 1 n—1 1

< Gle+ b))+ DD i)+ DD filsl(p T (2(s)) (2.6)
s=0 =1 s=0 =1

for all n € Ny n1. Now define a functiow(n) by the right-hand side of (2.6). Clearly,
v(n) is nondecreasing;(n) < G~'(v(n)) for n € Njg x5y and

N-1

v(0) = Ge+bN) + > gils)

s=0 i=1

Therefore, for any € Ny y_), we get
No(t) = Y fit)o(e  (=(1)

< w(w‘l(G‘l(v(t))))Zfi(t)-

Using the monotonicity ofy, o', G~ andv, we deduce

Av :
V(=G g @)

On the other hand, by the mean value theorem, we have

AQ(v(t)) = Qu(t+ 1)) — Qv(t)) = Q(§)Av(t) (2.8)
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for someg € [v(t), v(t + 1)]. From (2.7), (2.8) and using the functiéh) we obtain

I
< Zfi(t)' (2.9)

Settingt = s in the inequality (2.9), summing it fromthto n» — 1, we obtain

Qv(n)) < Q< (e4+b(N)) + ZZgZ ) + Z_:Zfi(s). (2.10)

s=0 i=1 s=0 =1
From the inequalities (2.6) and (2.10), we conclude that

z(n) < G {Ql (Q< (e +b(N +J:Z:égz ) +jz_: 'll fi(S))}

= 7

for n € Ny ;. Now, lettinge — 0, a combination ofi(n) < ¢~ '(z(n)) and the last
inequality produces the required inequality in (2.1) for= n, sinceN € Ny, was
arbitrary. This completes the proof. ]

For the special casg(u) = u?, G(r) = rP~9/? (p > ¢ > 0 is a constant), Theorem
2.1 gives the following retarded integral inequality for nonlinear functions.

Corollary 2.2. Letb, f;,9; € F(Zo,Ry),i = 1,...,n with b nondecreasing and let
o € F(Zy,7Z) be nondecreasing with(t) < t and —oc < a = inf{o(s) : s € Zg}.
Suppose thap and ¢ are constants witlp > ¢ > 0, and¢(u) is a nondecreasing
continuous function for. € R with ¢)(u) > 0 foru > 0. If u € F(Z,,R,) and

I n—1

)+ Y ul(o(s))[fi(s)(u(o(s))) + gi(s)

i=1 s=0
fort € I, then
n—1 1 n—1 1 1
) < {ort | (BT + oI Y 0] + EE S )] |
s=0 i=1 s=0 i=1

forn € Zyy ), Wwhere

"d
Ql(r):/ ol Sl], r>rg>0,
70 SP—a

Q! denotes the inverse function©f anda; > 0 is so chosen that

l l

0 ([b(n)]ppq +E224 X_:Zgi(s)) + ]% ZZL € Dom(Q;Y).

p s=0 =1 s=0 =1
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Proof. The proof follows by an argument similar to that in the proof of Theorem 2.1
with suitable modification. We omit the details here. O

Remark2.3. Whenp = 2, ¢ = 1, b(n) = ¢?, o(s) = s andi = 1, from Corollary 2.2,
we derive Theorem 1.3.

Theorem 2.1 can easily be applied to generate other useful nonlinear integral in-
equalities in more general situations. For example, we have the following result.

Theorem 2.4.Letb, f;,9; € F(Zo,R,),i = 1,...,n with b nondecreasing and let
o € F(Zy,Z) be nondecreasing with(t) < t and —oco < a = inf{o(s) : s € Zg}.
Suppose that > 0is constanty € C*(R,, R, ) is an increasing function witk(co) =
oo onRy, andy;(u), j = 1,2 are nondecreasing continuous functions doe R, with
Y;(u) > 0foru > 0. Ifu e F(Z,,R,) and

I n—1

p(u(n)) < +Zzuq (s)¢1(u(a(s))) + gi(s)iha(log u(a(s)))] (2.11)

=1 s=
forn € Z, then

(i) for the casea);(u) > ¥q(log(u)),

—_

n—

) < {67 05" (ulG ot +

I
o

S

forn € Zj,q,), and

(i) forthe case)(u) < 1y(log(w)),

u(n) < gpl{Gl lﬂgl <Q3[ ]+ nz_l i )+ gi(s )} } (2.13)

forn € Z[O,ag}a

where

" ds
ro Ym-1(071(G71(s)))’
G, Q.1 m = 2,3, denote the inverse functions@f(2,,,, m = 2, 3, the functionG (t)
is as defined in Theorem 2.1 for- 0, anda,,, > 0, m = 2,3, are chosen so that

r>rg >0,

Q(r) =

Qu[Gbn))] + Y Z ) + gi(s)] € Dom(,1).
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Proof. Lete > 0 andN € Z,. Define a function: : Zj x; — R, by
z(n) = e+b(N +ézzoluq P1(u(a(s))) + gi(s)ia(log u(o(s)))]. (2.14)
Clearly, 2(n) is nondecreasingy(n) < ¢~ (2(n)) for n € Zjx; andz(0) = ¢ + b(N).
We get
Az(n) = ;uq(U(n))[fi(n)wl(U(U(n))) + gi(n)iha(log u(o(n)))]
< "Zl; (1)) + gi(s)1ba(log ™" (2(n)))]-

Using the monotonicity of~! andz, we deduce

[SO t Zfz V(o (2(n)) + gi(s)n(log o (2(n))].  (2.15)

On the other hand, by the mean value theorem, we have
AG(z(n)) = G(z(n+1)) — G(z2(n)) = G'(§)Az(n) (2.16)

for some¢ € [z(n), z(n + 1)]. From (2.15), (2.16) and using the functih we obtain

Z (n))) + gi(s)v2(log ™" (2(n)))]. (2.17)

Settingn = s in the inequality (2.17), summing up, we get

—_

n—

l
G(2(n)) < G(e+b(N) + > ) [fi( 2(5))) + gi(s)2(log ™' (2(s)))]
= (2.18)

Il
=)

S

for all n € Ny n
When; (u) > 19(log(u)), from the inequality (2.18), we find

G(2(n)) < G(e +b(N +ZZ s) +gi(s)[Ur (e (2(5)))- (2.19)

Now, define a functiorv(n) by the right-hand side of (2.19). Clearly(n) is nonde-
creasingz(n) < G~'(v(n)) for n € Ny andv(0) = G(e + b(N)). Therefore, for



10 R. P. Agarwal, Y.-H. Kim, and S. K. Sen

anyt € N y_1), we get

Au(t) = Z[fi(t)+gi(t)]¢1(¢_1(2(t)))

< il G W0)) D L) + gi8)].

i=1
Using the monotonicity of;, ', G~! andv, we deduce

l

No(t)
Uil (G (0(0) ;W )+ gi(0)]- (2.20)

On the other hand, by the mean value theorem, we have
AQs(v(t)) = Qa(v(t + 1)) — Qa(v(t)) = Q5(E) Av(t) (2.21)
for some¢ € [v(t),v(t + 1)]. From (2.20), (2.21) and using the functi@n, we obtain

!
AQy(v Z )+ gilt (2.22)

Settingt = s in the inequality (2.22), summing it fromto n — 1, we obtain

n—1 1

Qa(v(n)) < Oy (G e+ b(N ) Z Z fi(s) + gi(s (2.23)

s=0 =1
From the inequalities (2.19) and (2.23), we conclude that

() < 671" (DulGle + (Y +Zz[ﬁ<s>+g¢<s>])} (2.24)

forn e N[O,N]-
Whenv, (u) < ¢ (log(u)), from the inequality (2.18), we find

n—1 1

G(2(n) < Gle+b(N)) + > Y "[fi(s) + gi(s)[alp ™" (2(5)))

s=0 =1

Now, by a suitable application of the process of obtaining (2.24), we conclude that
n—1

-1 1
z(n) <G [le (Qg[ e+ b(N))| + Z Z[fz(s) + 91(8)]>} (2.25)
s=0 i=1
forn € N[O,N]-
Letting e — 0, a combination ofu(n) < ¢ '(2(n)) and the inequalities (2.24),
(2.25) produces the required inequalities in (2.12), (2.13), respectivelyyfef n,
sinceN € Nj,,,;, m = 2,3 was arbitrary. This completes the proof. O
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For the special casg(u) = u?, G(r) = r*~9/? (p > ¢ > 0 is a constant), Theorem
2.4 gives the following retarded integral inequality for nonlinear functions.

Corollary 2.5. Letb, fi,9; € F(Zo,Ry),i = 1,...,n with b nondecreasing and let
o € F(Zy,7Z) be nondecreasing with(t) < t and —oo < a = inf{o(s) : s € Zg}.
Suppose that, ¢ are constants witly > ¢ > 0, andt;(u), j = 1,2 are nondecreasing
continuous functions for € R with ¢;(u) > 0 foru > 0. If u € F(Z,,R,) and

|
—

n

(n) + Y > ut(o())fils)er(u(o(s)) + gi(s)vz(log u(a(s)))]

=1 s

I
o

forn € Zy, then

(i) forthe case);(u) > 1o(log(u)),

) < {0t o ()7 ) + 21 gw )+ atsl] }

forn € Zq,), and

(if) for the case);(u) < Yy(log(u)),

" d
Qm(r) :/ —51’ TZTO>O7
To wm—B(SH)

G~ Q1 m = 4,5, denote the inverse functions@f(2,,, m = 4, 5, the functionG (t)
is as defined in Theorem 2.1 for- 0, anda,,, > 0, m = 4, 5, are chosen so that

O (10015 ) + LS S 1) + o] € Do),

Proof. The proof follows by an argument similar to that in the proof of Theorem 2.4
with suitable modification. We omit the details here. O

Theorem 2.1 can easily be applied to generate another useful nonlinear integral in-
equalities in more general situations. For example, we have the following result.
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Theorem 2.6.Letb, f;, g; € F(Zo,Ry),i =1,...,n with b nondecreasing and let €
F(Zy,Z) be nondecreasing with(t) < t and—oo < a = inf{o(s) : s € Zy}. Suppose
thatq > 0 is constantyy € C'(R,, R, ) is an increasing function witly(co) = co on
Ry, andL, M € C(R2,R,) satisfy

0 < L(t,v) — L(t,w) < M(t,w)(v — w) (2.26)
fort,v,w € Ry withv > w > 0. If u € F(Z,,Ry) and

plu(m) < b(n) + 3

=1 s=

n—

u?(a(s))[fi(s)L(s,u(a(s))) + gi(s)ula(s))]  (2.27)

forn € Zg, then

) < ¢~ { o 1 (1B + g[ﬁ(S)M(S) rael)|} @29
forn € Zy g, where

B(n) = Gn)+Y Y fils)L(s)

=0 =1

G~', H™! denote the inverse functions 6f H,, respectively, the functio&(r) is as
defined in Theorem 2.1 fer> 0, and > 0 is chosen so that

3
—

)+ [fi(s)M(s) + gi(s)] € Dom(H ™).

=1

Il
=)

Proof. Lete > 0 andN € Z,. Define a functior: : Zyp ny — R, by

n—1

2(n) = e+ b(N) + > > ul(a(s))[fi(s)L(s, u(o(s))) + gi(s)ulo(s))].  (2.29)

=1 s

Il
=)

Clearly,z(n) is nondecreasingi(n) < ¢~ '(z(n)) for n € Zy ny andz(0) = € + b(N).
We get

Az(n) = Zuq(a(n))[fi(n)L(mU(U(n)))+g¢(n)U(0(n))]

MY i) L(n, u(o(n))) + gi(n)u(o(n))].

i=1

IN
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Using the monotonicity op~! andz, we deduce
l
G S UL o) oo @3
On the other hand, by the mean value theorem, we have
AG(z(n)) = G(z(n+1)) — G(z(n)) = G'(§) Az(n) (2.31)

for some¢ € [z(n), z(n + 1)]. From (2.30), (2.31), and using the functiéhwe obtain

<Zfz (n))) + gi(n)u(o(n))]. (2.32)
Settingn = s in the inequality (2.32) and summing up, we get
n—1 1
G(z(n)) < G(e+b(N +ZZ (s))) + gi(s)u(o(s))]  (2.33)

for all n € Njy n7. From the inequalities (2.26), (2.33), we find

G(z(n)) < G(e+b(N +ZZL (2.34)
n—1 1
+ZZ fils s) + gi(s )]90_1(2(3»-

Now, define a functlorv(n) by the right-hand side of (2.34). Clearly(n) is nonde-
creasingz(n) < G~'(v(n)) for n € Ny x; and

N-1 1

v(0) = G(e + b(N +sz‘

s=0 i=1
Therefore, for any € Ny y_1), we get

l

Au(t) = Z[fi(t)M(t)+g¢(t)]<ﬁ_1(2(t))

< @ NG 0)) Y_[HOM ) + gi(1)].

=1

Using the monotonicity of~!, G~ andv, we deduce

Av l
peTreE Z LiOM) + g:i(1)]. (2.35)
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On the other hand, by the mean value theorem, we have
AH(v(t))=Hw(t+1)) — H(v(t)) = H'(§)Av(t) (2.36)
for someg € [v(t), v(t + 1)]. From (2.35), (2.36), and using the functiéh we obtain

l

AH®) < STIHOME) + g:(0)) (2.37)

i=1

Settingt = s in the inequality (2.37), summing it frofhto n» — 1, we obtain

[y

n—

H(v(n)) < H(v(0)) + Z )+ gi(s)]. (2.38)

O
—_

i=

From the inequalities (2.34) and (2.38), we conclude that

< 67! 1 (000 + )+ S S M) + s | e

s=0 i=1

for n € Ny n. Now, lettinge — 0, a combination ofu(n) < ¢ '(z(n)) and the
inequality (2.39) produces the required inequality in (2.28)¥otr= n, sinceN € N g
was arbitrary. This completes the proof. O

For the special casg(u) = u?, G(r) = r*~9/? (p > ¢ > 0 is a constant), Theorem
2.6 gives the following retarded integral inequality for nonlinear functions.

Corollary 2.7. Letb, f;, g; ando be as defined in Theorem 2.6. Suppose jhatg > 0
are constants and,, M € C(R? R, satisfy

0 < L(t,v) — L(t,w) < M(t,w)(v — w)

fort,v,w € R, withv > w > 0. If u € F(Z,,Ry) and

uP(n) < b(n) + Z 2_: ul(a(s)[fi(s)L(s,u(o(s))) + gi(s)u(o(s))]
forn € Zy, then
P4 — 7
u(n) < [H (H1(B1 p L ; fi(s)M(s) + gi(s )])}

forn € Zjy 5,1, where
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H; ' denotes the inverse function Bf and 3, > 0 is so chosen that

Hi(By(n)) + ]% S 1) M(s) + gi(s)) € Dom(H; ™).

Proof. The proof follows by an argument similar to that in the proof of Theorem 2.6
with suitable modification. We omit the details here. O

Remark2.8. Whenp =1, ¢ = 0, o(s) = s andi = 1, from Corollary 2.7, we derive an
analogue of the result of Theorem 1.2.

3 Applications

In this section we will show that our results are useful in proving the global existence of
solutions to certain differential equations with time delay. First consider the functional
sum-difference equation

26w (n)) = h(n) + 3 Bln,a(o(n), w(z(o(m))) a1
$((0)) = 2o

wherex, is a constantp € C(R,R,) is increasing function withp(|z|) < |¢(z)],

h € F(No, R) be nondecreasing, € F(N,,R), o € F(Zy, Z) be nondecreasing with
o(t) <tand—oo < a =inf{o(s) : s € Zo}, w € C(R,R) is nondecreasing function,
andF € C(Ny x R?, R). The following theorem deals with a bound on the solution of
the problem (3.1).

Theorem 3.1. Assume thafF, : Ny x R> — R,i = 1,...,lis a continuous function for
which there exists continuous nonnegative functifng, € F(No,R),i = 1,...,1
such that

|Eiln, x(o(n)), w(z(e(m)]] < |z(e(n)["(fi(n)y(jz(o(m)]) + gi(n),  (3.2)

n—1

2ol + > |h(s)| < b(n), (3.3)

s=0

whereg > 0 is a constant and(n), ¢ are as in Theorem 2.1. f(¢) is any solution of
the problem(3.1), then

ot <o {6 [Q*(Q(G(bm»f fjgxs)) +sz<>)}} (3.9)

5=0 i=1 s=0 i=1

forn, s € Ny, whereG, €2 are as in Theorem 2.1.
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Proof. Itis easy to see that the solutiefn) of the problem (3.1) satisfies the equivalent
equation

oaln)) =20+ Y h(s) + Y0 D Flssalo(9) ulelo(s)). (3)
From (3.5), we have
n—1 1
et < |xo|+2|h I+ XS IRl (o) wlalo @) @9

for n,s € Ny. Using the conditions (3.2), (3.3) on the right-hand side of (3.6) and
rewriting we have

n—1 1

¢(|z(n (n)+) > lz(o( Ji([x(o(s))]) + gi(s)];

s=0 =1

wheren, s € Ny. Now an immediate application of the inequality established in Theo-
rem 2.1 to the inequality (3.4) yields the result. O

Remark3.2 Consider the functional difference equation with the initial condition

Da?(n) = h(n) + Y Fi[n.2(o(n), w(z(o(n))], a7)
i=1 )
2P(0) =
wherep > 0,z; are constants. Assume thBt : Ny x B> — R, i = 1,...,lis a

continuous function for which there exists continuous nonnegative funcfions
F(No,R,), 7 = 1,...,1 such that the inequalities (3.2) and (3.3) hold, where 0
(p > q) is a constant antl(n), ¢ are as in Corollary 2.2. If(n) is any solution of the
problem (equation) (3.7), then it satisfies the equivalent equation

n—1 n—1 1

wP(n) =1+ Y h(s)+ Z Ejls, z(c(s)),w(z(a(s)))]. (3.8)
From (3.8), we have
[z(n)[” < |21 +Z!h \+ZZ!F s, z(0(s)), w(z(o(s)))]] (3.9)

for n,s € Ny. Using the conditions (3.2), (3.3) on the right-hand side of (3.9) and
rewriting we have

n—1 1

()l < b(n) + Y > la(of (s)(lz(a(s))]) + gi(s)], (3.10)

s=0 i=1
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wheren, s € Nyo. Now an immediate application of the inequality established in Corol-
lary 2.2 to the inequality (3.10) yields

n—

LS

WW%%F@(WMT#%E:;m@+£;wim@”w

S=

]

»

Il
o
-

I
—

for n, s € Ny, where(?; is as in Corollary 2.2.
The following theorem provides a uniqueness on the solution of the problem (3.7).

Theorem 3.3. Assume thaf' : I x R® — R is a continuous function for which there
exists continuous nonnegative functigh@:),i = 1,...,n for n € Ny such that

|F(n, 2, w(z)) — FE,7,w(@))| < fi(n)|2” — 27, (3.11)
wherep > 1 is a constant, then the problefB.7) has at most one solution one N,

Proof. Let z(n) andz(n) be two solutions of the problem (3.7). We have

zP(n) —7"(n) = : > AR a(o(n), w(z(o(n)] - En,2(a(n)), w(@(o(n)))]}
- (3.12)
From (3.11) and (3.12), we find
|z7(n) =2 (n)] < : > fils)a"(a(n)) = 2 (a(n))] (3.13)

l
(la"(n) =)} < Y-  [IA@ T o ()PP fils) A T o ()7, (3.14)

whereA(z,T;0(s)) = aP(o(s)) — 78(o(s)) for s € Ng. Wheny(u) =u,g=p—1,a
suitable application of the inequality in Corollary 2.2 to the functigtin) — z*(n)|"/”
and the inequality (3.14) lead us to the inequality

[a?(n) — 2 (n)[Y7 < 0

for all t € Ny. Hencex(n) = Z(n). O
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