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1 Introduction

The celebrated Gronwall inequality [11] states that ifu andf are nonnegative continu-
ous functions on the interval[a, b] satisfying

u(t) ≤ c+

∫ t

a

f(s)u(s)ds, t ∈ [a, b],

for some constantc ≥ 0, then

u(t) ≤ c exp

(∫ t

a

f(s)ds

)
, t ∈ [a, b]. (1.1)

Since the inequality (1.1) provides an explicit bound to the unknown functionu and
hence furnishes a handy tool in the study of solutions of differential equations. Because
of its fundamental importance, several generalizations and analogous results of the in-
equality (1.1) have been established over years [1–6,9,14,16,19]. Such generalizations
are, in general, referred to as Gronwall type inequalities [1,2,6,8,13,19]. These inequal-
ities provide necessary tools in the study of the theory of differential equations, integral
equations, and inequalities of various types. Also in 1969, Sugiyama [20] proved the
following most precise and complete discrete analogue of the well known Gronwall in-
tegral inequality [11]: Letu(t) andb(t) be nonnegative functions defined onN0 and
c ≥ 0 be a constant, whereN0 denotes the set of nonnegative integers. If

u(t) ≤ c+
t−1∑
s=0

b(s)u(s)

for t ∈ N0, then

u(t) ≤ c

t−1∏
s=0

[1 + b(s)] ≤ c exp

( t−1∑
s=0

b(s)

)
for t ∈ N0. This result has evoked considerable interest in the literature and many gen-
eralizations and extensions of this inequality have been established, which find appli-
cations in the study of various classes of finite difference equations and sum-difference
equations.

In addition, many authors [1, 2, 7, 10, 12, 15, 17, 19] have established several other
very useful Gronwall-like discrete inequalities. Among these inequalities, the following
one (Theorem 1.1 below) due to Pachpatte [15] needs specific mention. It is useful in
the study of boundedness of certain difference equations.

Theorem 1.1 (Pachpatte [15]).Let u(t), a(t), b(t) and p(t) be nonnegative functions
defined onN0 and

u(t) ≤ a(t) + p(t)
t−1∑
s=0

b(s)u(s)
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for t ∈ N0, then

u(t) ≤ a(t) + p(t)
t−1∑
s=0

a(s)b(s)
t−1∏

σ=s+1

[1 + b(σ)p(σ)]

for t ∈ N0.

Pachpatte’s inequality prompted researchers to devote considerable time for its gen-
eralizations and consequent applications [1, 2, 7, 10, 19]. For instance, Dragomir estab-
lished the following generalization (Theorem 1.2 below) of Pachpatte’s inequality in the
process of establishing a connection between extended and used considerably in various
contexts [10].

Theorem 1.2 (Dragomir [10]). Letu(t), a(t), b(t) be nonnegative functions defined for
t ∈ N0. Let the functionL : N0 × R+ → R+ satisfies the condition

0 ≤ L(t, x)− L(t, y) ≤ k(t, y)(x− y)

for t ∈ N0 andx ≥ y ≥ 0, wherek(t, r) is a nonnegative function defined fort ∈ N0

andr ∈ R+. If

u(t) ≤ a(t) + b(t)
t−1∑
s=0

L(s, u(s))

for t ∈ N0, then

u(t) ≤ a(t) + b(t)
t−1∑
s=0

L(s, a(s))
t−1∏

σ=s+1

[1 + k(σ, a(σ))b(σ)]

for t ∈ N0.

More recently, Pachpatte established following useful inequality (Theorem 1.3 be-
low) inspired by the discrete version of Bihari’s inequality [4], which is handy in the
study of the global existence of solutions to certain finite difference equations and sum-
difference equations.

Theorem 1.3 (Pachpatte [18]).Let u(t), a(t), b(t) be nonnegative functions defined
for t ∈ N0 and c be a nonnegative constant. Letg(u) be a continuous nondecreasing
function defined onR+ with g(u) > 0 for u > 0. If

u2(t) ≤ c2 + 2
t−1∑
s=0

[a(s)u(s)g(u(s)) + b(s)u(s)]

for t ∈ N0, then for0 ≤ t ≤ t1, t, t1 ∈ N0,

u(t) ≤ Ω−1

[
Ω(p(t)) +

t−1∑
s=0

a(s)

]
,
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where

p(t) = c+
t−1∑
s=0

b(s)

for t ∈ N0,

Ω(r) =

∫ r

r0

ds

g(s)
, r > 0,

r0 > 0 is arbitrary, Ω−1 is a inverse function ofΩ andt1 ∈ N0 be chosen so that

Ω(p(t)) +
t−1∑
s=0

a(s) ∈ Dom(Ω−1).

for all t ∈ N0 such that0 ≤ t ≤ t1.

The main aim of the present paper is to establish some nonlinear retarded inequali-
ties which extend the foregoing theorems. We also illustrate the use/application of these
inequalities.

2 Main Results

For discrete inequalities it is customary that the functions occurring in them are defined
on countable sets, which can, without loss of generality, be assumed to be subsets of
the setZ of integers. LetR denote the set of real numbers andR+ = [0,∞) be the
given subset ofR. Let α, β ∈ R, α ≤ β, Zα = {n ∈ Z : n ≥ α}, Z[α,β] = {n ∈ Z :

α ≤ n ≤ β}. Let
β∑

j=α

x(j) and
β∏

j=α

x(j) be the sum and the product ofx(j), j ∈ Z[α,β],

respectively and assume that
α−1∑
j=α

x(j) = 0,
α−1∏
j=α

x(j) = 1.Denote byCi(M,N) the class

of all i–times continuously differentiable functions defined on the setM to the setN for
i = 1, 2, · · · andC0(M,N) = C(M,N). Further, denote byF(M,N) the collection of
functions defined on the setM to the setN . As usual, letu be a real-valued function on
Z[α,β] and the difference operator4 onu be defined as

4u(n) = u(n+ 1)− u(n), n ∈ Z[α,β−1].

Also assume that all the sums and products involved throughout the discussion exist on
the respective domains of their definitions.

Theorem 2.1. Let b, fi, gi ∈ F(Z0,R+), i = 1, . . . , n with b nondecreasing and let
σ ∈ F(Z0,Z) be nondecreasing withσ(t) ≤ t and−∞ < a = inf{σ(s) : s ∈ Z0}.
Suppose thatq ≥ 0 is a constant,ϕ ∈ C1(R+,R+) is an increasing function with
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ϕ(∞) = ∞ on R+, andψ(u) is a nondecreasing continuous function foru ∈ R+ with
ψ(u) > 0 for u > 0. If u ∈ F(Za,R+) and

ϕ(u(n)) ≤ b(n) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)ψ(u(σ(s))) + gi(s)]

for t ∈ I, then

u(n) ≤ ϕ−1

{
G−1

[
Ω−1

(
Ω

(
G(b(n)) +

n−1∑
s=0

l∑
i=1

gi(s)

)
+

n−1∑
s=0

l∑
i=1

fi(s)

)]}
(2.1)

for n ∈ Z[0,α], where

G(r) =

∫ r

r0

ds

[ϕ−1(s)]q
, r ≥ r0 > 0,

Ω(r) =

∫ r

r0

ds

ψ[ϕ−1(G−1(s))]
, r ≥ r0 > 0,

G−1,Ω−1 denote the inverse functions ofG,Ω, respectively andα ≥ 0 is so chosen that

Ω

(
G(b(n)) +

n−1∑
s=0

l∑
i=1

gi(s)

)
+

n−1∑
s=0

l∑
i=1

fi(s) ∈ Dom(Ω−1).

Proof. Let ε > 0 andN ∈ Z0. Define a functionz : Z[0,N ] → R0 by

z(n) = ε+ b(N) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)ψ(u(σ(s))) + gi(s)].

Clearly,z(n) is nondecreasing,u(n) ≤ ϕ−1(z(n)) for n ∈ Z[0,N ] andz(0) = ε+ b(N).
We get

4z(n) =
l∑

i=1

uq(σ(n))[fi(n)ψ(u(σ(n))) + gi(n)]

≤ [ϕ−1(z(n))]q
l∑

i=1

[fi(n)ψ(ϕ−1(z(n))) + gi(n)].

Using the monotonicity ofϕ−1 andz, we deduce

[ϕ−1(z(n))]q ≥ [ϕ−1(z(0))]q = [ϕ−1(ε+ b(N))]q > 0.

That is
4z(t)

[ϕ−1(z(n))]q
≤

l∑
i=1

[fi(n)ψ(ϕ−1(z(n))) + gi(n)]. (2.2)
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On the other hand, by the mean value theorem, we have

4G(z(n)) = G(z(n+ 1))−G(z(n)) = G′(ξ)4z(n) (2.3)

for someξ ∈ [z(n), z(n+ 1)]. From (2.2), (2.3) and using the functionG, we obtain

4G(z(n)) ≤
l∑

i=1

[fi(n)ψ(ϕ−1(z(n))) + gi(n)]. (2.4)

Settingn = s in the inequality (2.4), summing up, we get

n−1∑
s=0

4G(z(s)) ≤
n−1∑
s=0

l∑
i=1

[fi(s)ψ(ϕ−1(z(s))) + gi(s)]. (2.5)

From the inequality (2.5), we observe that

G(z(n)) ≤ G(ε+ b(N)) +
n−1∑
s=0

l∑
i=1

[fi(s)ψ(ϕ−1(z(s))) + gi(s)]

≤ G(ε+ b(N)) +
N−1∑
s=0

l∑
i=1

gi(s) +
n−1∑
s=0

l∑
i=1

fi(s)ψ(ϕ−1(z(s))) (2.6)

for all n ∈ N[0,N ]. Now define a functionv(n) by the right-hand side of (2.6). Clearly,
v(n) is nondecreasing,z(n) ≤ G−1(v(n)) for n ∈ N[0,N ] and

v(0) = G(ε+ b(N)) +
N−1∑
s=0

l∑
i=1

gi(s).

Therefore, for anyt ∈ N[0,N−1], we get

4v(t) =
l∑

i=1

fi(t)ψ(ϕ−1(z(t)))

≤ ψ(ϕ−1(G−1(v(t))))
l∑

i=1

fi(t).

Using the monotonicity ofψ, ϕ−1, G−1 andv, we deduce

4v(t)
ψ(ϕ−1(G−1(v(t))))

≤
l∑

i=1

fi(t). (2.7)

On the other hand, by the mean value theorem, we have

4Ω(v(t)) = Ω(v(t+ 1))− Ω(v(t)) = Ω′(ξ)4v(t) (2.8)
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for someξ ∈ [v(t), v(t+ 1)]. From (2.7), (2.8) and using the functionΩ, we obtain

4Ω(v(t)) ≤
l∑

i=1

fi(t). (2.9)

Settingt = s in the inequality (2.9), summing it from0 to n− 1, we obtain

Ω(v(n)) ≤ Ω

(
G(ε+ b(N)) +

N−1∑
s=0

l∑
i=1

gi(s)

)
+

n−1∑
s=0

l∑
i=1

fi(s). (2.10)

From the inequalities (2.6) and (2.10), we conclude that

z(n) ≤ G−1

[
Ω−1

(
Ω

(
G(ε+ b(N)) +

N−1∑
s=0

l∑
i=1

gi(s)

)
+

n−1∑
s=0

l∑
i=1

fi(s)

)]
for n ∈ N[0,N ]. Now, lettingε → 0, a combination ofu(n) ≤ ϕ−1(z(n)) and the last
inequality produces the required inequality in (2.1) forN = n, sinceN ∈ N[0,α] was
arbitrary. This completes the proof.

For the special caseϕ(u) = up,G(r) = r(p−q)/p (p > q ≥ 0 is a constant), Theorem
2.1 gives the following retarded integral inequality for nonlinear functions.

Corollary 2.2. Let b, fi, gi ∈ F(Z0,R+), i = 1, . . . , n with b nondecreasing and let
σ ∈ F(Z0,Z) be nondecreasing withσ(t) ≤ t and−∞ < a = inf{σ(s) : s ∈ Z0}.
Suppose thatp and q are constants withp > q ≥ 0, andψ(u) is a nondecreasing
continuous function foru ∈ R+ with ψ(u) > 0 for u > 0. If u ∈ F(Za,R+) and

up(n) ≤ b(n) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)ψ(u(σ(s))) + gi(s)]

for t ∈ I, then

u(n) ≤
{

Ω−1
1

[
Ω1

(
[b(n)]

p−q
p +

p− q

p

n−1∑
s=0

l∑
i=1

gi(s)

)
+
p− q

p

n−1∑
s=0

l∑
i=1

fi(s)

]} 1
p−q

for n ∈ Z[0,α1], where

Ω1(r) =

∫ r

r0

ds

ψ[s
1

p−q ]
, r ≥ r0 > 0,

Ω−1
1 denotes the inverse function ofΩ1 andα1 ≥ 0 is so chosen that

Ω1

(
[b(n)]

p−q
p +

p− q

p

n−1∑
s=0

l∑
i=1

gi(s)

)
+
p− q

p

n−1∑
s=0

l∑
i=1

fi(s) ∈ Dom(Ω−1
1 ).
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Proof. The proof follows by an argument similar to that in the proof of Theorem 2.1
with suitable modification. We omit the details here.

Remark2.3. Whenp = 2, q = 1, b(n) = c2, σ(s) = s andi = 1, from Corollary 2.2,
we derive Theorem 1.3.

Theorem 2.1 can easily be applied to generate other useful nonlinear integral in-
equalities in more general situations. For example, we have the following result.

Theorem 2.4. Let b, fi, gi ∈ F(Z0,R+), i = 1, . . . , n with b nondecreasing and let
σ ∈ F(Z0,Z) be nondecreasing withσ(t) ≤ t and−∞ < a = inf{σ(s) : s ∈ Z0}.
Suppose thatq ≥ 0 is constant,ϕ ∈ C1(R+,R+) is an increasing function withϕ(∞) =
∞ onR+, andψj(u), j = 1, 2 are nondecreasing continuous functions foru ∈ R+ with
ψj(u) > 0 for u > 0. If u ∈ F(Za,R1) and

ϕ(u(n)) ≤ b(n) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)ψ1(u(σ(s))) + gi(s)ψ2(log u(σ(s)))] (2.11)

for n ∈ Z0, then

(i) for the caseψ1(u) ≥ ψ2(log(u)),

u(n) ≤ ϕ−1

{
G−1

[
Ω−1

2

(
Ω2[G(b(n))] +

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]

)]}
(2.12)

for n ∈ Z[0,α2], and

(ii ) for the caseψ1(u) < ψ2(log(u)),

u(n) ≤ ϕ−1

{
G−1

[
Ω−1

3

(
Ω3[G(b(n))] +

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]

)]}
(2.13)

for n ∈ Z[0,α3],

where

Ωm(r) =

∫ r

r0

ds

ψm−1(ϕ−1(G−1(s)))
, r ≥ r0 > 0,

G−1,Ω−1
m ,m = 2, 3, denote the inverse functions ofG,Ωm,m = 2, 3, the functionG(t)

is as defined in Theorem 2.1 fort > 0, andαm ≥ 0,m = 2, 3, are chosen so that

Ωm[G(b(n))] +
n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)] ∈ Dom(Ω−1
m ).



Retarded Discrete Inequalities 9

Proof. Let ε > 0 andN ∈ Z0. Define a functionz : Z[0,N ] → R0 by

z(n) = ε+b(N)+
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)ψ1(u(σ(s)))+gi(s)ψ2(log u(σ(s)))]. (2.14)

Clearly,z(n) is nondecreasing,u(n) ≤ ϕ−1(z(n)) for n ∈ Z[0,N ] andz(0) = ε+ b(N).
We get

4z(n) =
l∑

i=1

uq(σ(n))[fi(n)ψ1(u(σ(n))) + gi(n)ψ2(log u(σ(n)))]

≤ [ϕ−1(z(n))]q
l∑

i=1

[fi(s)ψ1(ϕ
−1(z(n))) + gi(s)ψ2(logϕ

−1(z(n)))].

Using the monotonicity ofϕ−1 andz, we deduce

4z(t)
[ϕ−1(z(n))]q

≤
l∑

i=1

[fi(s)ψ1(ϕ
−1(z(n))) + gi(s)ψ2(logϕ

−1(z(n)))]. (2.15)

On the other hand, by the mean value theorem, we have

4G(z(n)) = G(z(n+ 1))−G(z(n)) = G′(ξ)4z(n) (2.16)

for someξ ∈ [z(n), z(n+ 1)]. From (2.15), (2.16) and using the functionG, we obtain

4G(z(n)) ≤
l∑

i=1

[fi(s)ψ1(ϕ
−1(z(n))) + gi(s)ψ2(logϕ

−1(z(n)))]. (2.17)

Settingn = s in the inequality (2.17), summing up, we get

G(z(n)) ≤ G(ε+ b(N)) +
n−1∑
s=0

l∑
i=1

[fi(s)ψ1(ϕ
−1(z(s))) + gi(s)ψ2(logϕ

−1(z(s)))]

(2.18)
for all n ∈ N[0,N ].

Whenψ1(u) ≥ ψ2(log(u)), from the inequality (2.18), we find

G(z(n)) ≤ G(ε+ b(N)) +
n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]ψ1(ϕ
−1(z(s))). (2.19)

Now, define a functionv(n) by the right-hand side of (2.19). Clearly,v(n) is nonde-
creasing,z(n) ≤ G−1(v(n)) for n ∈ N[0,N ] andv(0) = G(ε + b(N)). Therefore, for



10 R. P. Agarwal, Y.-H. Kim, and S. K. Sen

anyt ∈ N[0,N−1], we get

4v(t) =
l∑

i=1

[fi(t) + gi(t)]ψ1(ϕ
−1(z(t)))

≤ ψ1(ϕ
−1(G−1(v(t))))

l∑
i=1

[fi(t) + gi(t)].

Using the monotonicity ofψ1, ϕ
−1, G−1 andv, we deduce

4v(t)
ψ1(ϕ−1(G−1(v(t))))

≤
l∑

i=1

[fi(t) + gi(t)]. (2.20)

On the other hand, by the mean value theorem, we have

4Ω2(v(t)) = Ω2(v(t+ 1))− Ω2(v(t)) = Ω′
2(ξ)4v(t) (2.21)

for someξ ∈ [v(t), v(t+ 1)]. From (2.20), (2.21) and using the functionΩ2, we obtain

4Ω2(v(t)) ≤
l∑

i=1

[fi(t) + gi(t)]. (2.22)

Settingt = s in the inequality (2.22), summing it from0 to n− 1, we obtain

Ω2(v(n)) ≤ Ω2

(
G(ε+ b(N))

)
+

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]. (2.23)

From the inequalities (2.19) and (2.23), we conclude that

z(n) ≤ G−1

[
Ω−1

2

(
Ω2[G(ε+ b(N))] +

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]

)]
(2.24)

for n ∈ N[0,N ].
Whenψ1(u) < ψ1(log(u)), from the inequality (2.18), we find

G(z(n)) ≤ G(ε+ b(N)) +
n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]ψ2(ϕ
−1(z(s)))

Now, by a suitable application of the process of obtaining (2.24), we conclude that

z(n) ≤ G−1

[
Ω−1

3

(
Ω3[G(ε+ b(N))] +

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]

)]
(2.25)

for n ∈ N[0,N ].
Letting ε → 0, a combination ofu(n) ≤ ϕ−1(z(n)) and the inequalities (2.24),

(2.25) produces the required inequalities in (2.12), (2.13), respectively, forN = n,
sinceN ∈ N[0,αm],m = 2, 3 was arbitrary. This completes the proof.
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For the special caseϕ(u) = up, G(r) = r(p−q)/p (p > q ≥ 0 is a constant), Theorem
2.4 gives the following retarded integral inequality for nonlinear functions.

Corollary 2.5. Let b, fi, gi ∈ F(Z0,R+), i = 1, . . . , n with b nondecreasing and let
σ ∈ F(Z0,Z) be nondecreasing withσ(t) ≤ t and−∞ < a = inf{σ(s) : s ∈ Z0}.
Suppose thatp, q are constants withp > q ≥ 0, andψj(u), j = 1, 2 are nondecreasing
continuous functions foru ∈ R+ with ψj(u) > 0 for u > 0. If u ∈ F(Za,R1) and

up(n) ≤ b(n) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)ψ1(u(σ(s))) + gi(s)ψ2(log u(σ(s)))]

for n ∈ Z0, then

(i) for the caseψ1(u) ≥ ψ2(log(u)),

u(n) ≤
{

Ω−1
4

[
Ω4

(
[b(n)]

p−q
p

)
+
p− q

p

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]

]} 1
p−q

for n ∈ Z[0,α4], and

(ii ) for the caseψ1(u) < ψ2(log(u)),

u(n) ≤
{

Ω−1
5

[
Ω5

(
[b(n)]

p−q
p

)
+
p− q

p

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)]

]} 1
p−q

for n ∈ Z[0,α5],

where

Ωm(r) =

∫ r

r0

ds

ψm−3(s
1

p−q )
, r ≥ r0 > 0,

G−1,Ω−1
m ,m = 4, 5, denote the inverse functions ofG,Ωm,m = 4, 5, the functionG(t)

is as defined in Theorem 2.1 fort > 0, andαm ≥ 0,m = 4, 5, are chosen so that

Ωm

(
[b(n)]

p−q
p

)
+
p− q

p

n−1∑
s=0

l∑
i=1

[fi(s) + gi(s)] ∈ Dom(Ω−1
m ).

Proof. The proof follows by an argument similar to that in the proof of Theorem 2.4
with suitable modification. We omit the details here.

Theorem 2.1 can easily be applied to generate another useful nonlinear integral in-
equalities in more general situations. For example, we have the following result.
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Theorem 2.6.Let b, fi, gi ∈ F(Z0,R+), i = 1, . . . , n with b nondecreasing and letσ ∈
F(Z0,Z) be nondecreasing withσ(t) ≤ t and−∞ < a = inf{σ(s) : s ∈ Z0}. Suppose
that q ≥ 0 is constant,ϕ ∈ C1(R+,R+) is an increasing function withϕ(∞) = ∞ on
R+, andL,M ∈ C(R2

+,R+) satisfy

0 ≤ L(t, v)− L(t, w) ≤M(t, w)(v − w) (2.26)

for t, v, w ∈ R+ with v ≥ w ≥ 0. If u ∈ F(Za,R0) and

ϕ(u(n)) ≤ b(n) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)L(s, u(σ(s))) + gi(s)u(σ(s))] (2.27)

for n ∈ Z0, then

u(n) ≤ ϕ−1

{
G−1

[
H−1

(
H[B(n)] +

n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)]

)]}
(2.28)

for n ∈ Z[0,β], where

H(r) =

∫ r

r0

ds

ϕ−1(G−1(s)))
, r ≥ r0 > 0,

B(n) = G(b(n)) +
n−1∑
s=0

l∑
i=1

fi(s)L(s),

G−1, H−1 denote the inverse functions ofG,H,, respectively, the functionG(r) is as
defined in Theorem 2.1 forr > 0, andβ ≥ 0 is chosen so that

H[B(n)] +
n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)] ∈ Dom(H−1).

Proof. Let ε > 0 andN ∈ Z0. Define a functionz : Z[0,N ] → R0 by

z(n) = ε+ b(N) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)L(s, u(σ(s))) + gi(s)u(σ(s))]. (2.29)

Clearly,z(n) is nondecreasing,u(n) ≤ ϕ−1(z(n)) for n ∈ Z[0,N ] andz(0) = ε+ b(N).
We get

4z(n) =
l∑

i=1

uq(σ(n))[fi(n)L(n, u(σ(n))) + gi(n)u(σ(n))]

≤ [ϕ−1(z(n))]q
l∑

i=1

[fi(n)L(n, u(σ(n))) + gi(n)u(σ(n))].



Retarded Discrete Inequalities 13

Using the monotonicity ofϕ−1 andz, we deduce

4z(t)
[ϕ−1(z(n))]q

≤
l∑

i=1

[fi(n)L(n, u(σ(n))) + gi(n)u(σ(n))]. (2.30)

On the other hand, by the mean value theorem, we have

4G(z(n)) = G(z(n+ 1))−G(z(n)) = G′(ξ)4z(n) (2.31)

for someξ ∈ [z(n), z(n+ 1)]. From (2.30), (2.31), and using the functionG, we obtain

4G(z(n)) ≤
l∑

i=1

[fi(n)L(n, u(σ(n))) + gi(n)u(σ(n))]. (2.32)

Settingn = s in the inequality (2.32) and summing up, we get

G(z(n)) ≤ G(ε+ b(N)) +
n−1∑
s=0

l∑
i=1

[fi(s)L(s, u(σ(s))) + gi(s)u(σ(s))] (2.33)

for all n ∈ N[0,N ]. From the inequalities (2.26), (2.33), we find

G(z(n)) ≤ G(ε+ b(N)) +
N−1∑
s=0

l∑
i=1

fi(s)L(s) (2.34)

+
n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)]ϕ
−1(z(s)).

Now, define a functionv(n) by the right-hand side of (2.34). Clearly,v(n) is nonde-
creasing,z(n) ≤ G−1(v(n)) for n ∈ N[0,N ] and

v(0) = G(ε+ b(N)) +
N−1∑
s=0

l∑
i=1

fi(s)L(s).

Therefore, for anyt ∈ N[0,N−1], we get

4v(t) =
l∑

i=1

[fi(t)M(t) + gi(t)]ϕ
−1(z(t))

≤ ϕ−1(G−1(v(t)))
l∑

i=1

[fi(t)M(t) + gi(t)].

Using the monotonicity ofϕ−1, G−1 andv, we deduce

4v(t)
ϕ−1(G−1(v(t)))

≤
l∑

i=1

[fi(t)M(t) + gi(t)]. (2.35)
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On the other hand, by the mean value theorem, we have

4H(v(t)) = H(v(t+ 1))−H(v(t)) = H ′(ξ)4v(t) (2.36)

for someξ ∈ [v(t), v(t+ 1)]. From (2.35), (2.36), and using the functionH, we obtain

4H(v(t)) ≤
l∑

i=1

[fi(t)M(t) + gi(t)]. (2.37)

Settingt = s in the inequality (2.37), summing it from0 to n− 1, we obtain

H(v(n)) ≤ H(v(0)) +
n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)]. (2.38)

From the inequalities (2.34) and (2.38), we conclude that

z(n) ≤ G−1

[
H−1

(
H(v(0)) +

n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)]

)]
(2.39)

for n ∈ N[0,N ]. Now, letting ε → 0, a combination ofu(n) ≤ ϕ−1(z(n)) and the
inequality (2.39) produces the required inequality in (2.28) forN = n, sinceN ∈ N[0,β]

was arbitrary. This completes the proof.

For the special caseϕ(u) = up, G(r) = r(p−q)/p (p > q ≥ 0 is a constant), Theorem
2.6 gives the following retarded integral inequality for nonlinear functions.

Corollary 2.7. Letb, fi, gi andσ be as defined in Theorem 2.6. Suppose thatp > q ≥ 0
are constants andL,M ∈ C(R2

+,R+) satisfy

0 ≤ L(t, v)− L(t, w) ≤M(t, w)(v − w)

for t, v, w ∈ R+ with v ≥ w ≥ 0. If u ∈ F(Za,R0) and

up(n) ≤ b(n) +
l∑

i=1

n−1∑
s=0

uq(σ(s))[fi(s)L(s, u(σ(s))) + gi(s)u(σ(s))]

for n ∈ Z0, then

u(n) ≤
[
H−1

1

(
H1(B1(n)) +

p− q

p

n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)]

)] 1
p−q

for n ∈ Z[0,β1], where

H1(r) =

∫ r

r0

ds

s
1

p−q

, r ≥ r0 > 0,

B1(n) = G(b(n)) +
n−1∑
s=0

l∑
i=1

fi(s)L(s),
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H−1
1 denotes the inverse function ofH1 andβ1 ≥ 0 is so chosen that

H1(B1(n)) +
p− q

p

n−1∑
s=0

l∑
i=1

[fi(s)M(s) + gi(s)] ∈ Dom(H−1
1 ).

Proof. The proof follows by an argument similar to that in the proof of Theorem 2.6
with suitable modification. We omit the details here.

Remark2.8. Whenp = 1, q = 0, σ(s) = s andi = 1, from Corollary 2.7, we derive an
analogue of the result of Theorem 1.2.

3 Applications

In this section we will show that our results are useful in proving the global existence of
solutions to certain differential equations with time delay. First consider the functional
sum-difference equation 4φ(x(n)) = h(n) +

l∑
i=1

Fi[n, x(σ(n)), w(x(σ(n)))],

φ(x(0)) = x0,

(3.1)

wherex0 is a constant,φ ∈ C(R,R+) is increasing function withφ(|x|) ≤ |φ(x)|,
h ∈ F(N0,R) be nondecreasing,x ∈ F(Na,R), σ ∈ F(Z0,Z) be nondecreasing with
σ(t) ≤ t and−∞ < a = inf{σ(s) : s ∈ Z0}, w ∈ C(R,R) is nondecreasing function,
andF ∈ C(N0 × R2, R). The following theorem deals with a bound on the solution of
the problem (3.1).

Theorem 3.1.Assume thatFi : N0×R2 → R, i = 1, . . . , l is a continuous function for
which there exists continuous nonnegative functionsfi, gi ∈ F(N0,R+), i = 1, . . . , l
such that

|Fi[n, x(σ(n)), w(x(σ(n)))]| ≤ |x(σ(n))|q(fi(n)ψ(|x(σ(n))|) + gi(n)), (3.2)

|x0|+
n−1∑
s=0

|h(s)| ≤ b(n), (3.3)

whereq ≥ 0 is a constant andb(n), ψ are as in Theorem 2.1. Ifx(t) is any solution of
the problem(3.1), then

|x(n)| ≤ φ−1

{
G−1

[
Ω−1

(
Ω

(
G(b(n)) +

n−1∑
s=0

l∑
i=1

gi(s)

)
+

n−1∑
s=0

l∑
i=1

fi(s)

)]}
(3.4)

for n, s ∈ N0, whereG,Ω are as in Theorem 2.1.
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Proof. It is easy to see that the solutionx(n) of the problem (3.1) satisfies the equivalent
equation

φ(x(n)) = x0 +
n−1∑
s=0

h(s) +
n−1∑
s=0

l∑
i=1

Fi[s, x(σ(s)), w(x(σ(s)))]. (3.5)

From (3.5), we have

|φ(x(n))| ≤ |x0|+
n−1∑
s=0

|h(s)|+
n−1∑
s=0

l∑
i=1

|Fi[s, x(σ(s)), w(x(σ(s)))]| (3.6)

for n, s ∈ N0. Using the conditions (3.2), (3.3) on the right-hand side of (3.6) and
rewriting we have

φ(|x(n)|) ≤ b(n) +
n−1∑
s=0

l∑
i=1

|x(σ(s))|q[fi(s)ψ(|x(σ(s))|) + gi(s)],

wheren, s ∈ N0. Now an immediate application of the inequality established in Theo-
rem 2.1 to the inequality (3.4) yields the result.

Remark3.2. Consider the functional difference equation with the initial condition 4xp(n) = h(n) +
l∑

i=1

Fi[n, x(σ(n)), w(x(σ(n)))],

xp(0) = x1,

(3.7)

wherep > 0, x1 are constants. Assume thatFi : N0 × R2 → R, i = 1, . . . , l is a
continuous function for which there exists continuous nonnegative functionsfi, gi ∈
F(N0,R+), i = 1, . . . , l such that the inequalities (3.2) and (3.3) hold, whereq ≥ 0
(p > q) is a constant andb(n), ψ are as in Corollary 2.2. Ifx(n) is any solution of the
problem (equation) (3.7), then it satisfies the equivalent equation

xp(n) = x1 +
n−1∑
s=0

h(s) +
n−1∑
s=0

l∑
i=1

Fi[s, x(σ(s)), w(x(σ(s)))]. (3.8)

From (3.8), we have

|x(n)|p ≤ |x1|+
n−1∑
s=0

|h(s)|+
n−1∑
s=0

l∑
i=1

|Fi[s, x(σ(s)), w(x(σ(s)))]| (3.9)

for n, s ∈ N0. Using the conditions (3.2), (3.3) on the right-hand side of (3.9) and
rewriting we have

|x(n)|p ≤ b(n) +
n−1∑
s=0

l∑
i=1

|x(σ(s))|q[fi(s)ψ(|x(σ(s))|) + gi(s)], (3.10)
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wheren, s ∈ N0. Now an immediate application of the inequality established in Corol-
lary 2.2 to the inequality (3.10) yields

|x(n)| ≤
{

Ω−1
1

[
Ω1

(
[b(n)]

p−q
p +

p− q

p

n−1∑
s=0

l∑
i=1

gi(s)

)
+
p− q

p

n−1∑
s=0

l∑
i=1

fi(s)

]} 1
p−q

for n, s ∈ N0, whereΩ1 is as in Corollary 2.2.

The following theorem provides a uniqueness on the solution of the problem (3.7).

Theorem 3.3. Assume thatF : I × R3 → R is a continuous function for which there
exists continuous nonnegative functionsfi(n), i = 1, . . . , n for n ∈ N0 such that

|F (n, x, w(x))− F (t, x, w(x))| ≤ fi(n)|xp − xp|, (3.11)

wherep > 1 is a constant, then the problem(3.7)has at most one solution onn ∈ N0.

Proof. Let x(n) andx(n) be two solutions of the problem (3.7). We have

xp(n)− xp(n) =
n−1∑
s=0

l∑
i=1

{Fi[n, x(σ(n)), w(x(σ(n)))]− Fi[n, x(σ(n)), w(x(σ(n)))]}.

(3.12)
From (3.11) and (3.12), we find

|xp(n)− xp(n)| ≤
n−1∑
s=0

l∑
i=1

fi(s)|xp(σ(n))− xp(σ(n))| (3.13)

for n, s ∈ N0. Rewriting the right-hand and the left-hand sides of (3.13) we have

(|xp(n)− xp(n)|
1
p )p ≤

n−1∑
s=0

l∑
i=1

[|A(x, x;σ(s))|
1
p ]p−1fi(s)[|A(x, x;σ(s))|

1
p ], (3.14)

whereA(x, x;σ(s)) = xp(σ(s))− xp(σ(s)) for s ∈ N0. Whenψ(u) = u, q = p− 1, a
suitable application of the inequality in Corollary 2.2 to the function|xp(n)− xp(n)|1/p

and the inequality (3.14) lead us to the inequality

|xp(n)− xp(n)|1/p ≤ 0

for all t ∈ N0. Hencex(n) = x(n).
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