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Abstract

In this paper, we investigate the impulsive stabilization of certain delay differ-
ential equations with piecewise constant argument by using Lyapunov function and
analysis methods. Some nonimpulsive systems can be stabilized by imposition of
impulsive controls. We also give an example to demonstrate the effectiveness of
the proposed control and stabilization methods.
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1 Introduction and Preliminaries

In recent years, impulsive control and impulsive stabilization for delay differential equa-
tions have attracted a great deal of attention. It arises naturally from a wide variety of
applications such as threshold theory in biology, ecosystems management, and orbital
transfer of satellite. Recently, various results for the impulsive stabilization of delay dif-
ferential equations are obtained via different approaches, for instance, see [2, 4, 8–11].
Impulses can make unstable systems stable and, stable systems can become unstable
after impulses effects [1, 3–5, 7, 8]. However, to the best of author’s knowledge, there
are few works on impulsive stabilization of delay differential equations with piecewise
constant argument.
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In this paper, we consider the delay differential equation (r(t)(x′(t))σ)′ +
N∑

i=1

ai(t)x
δ(t− [t]− τi) + p(t)xµ(t) = 0, t ≥ 0,

x(t) = φ(t),−τ ≤ t ≤ 0, x′(0) = x′0

(1.1)

and the corresponding equation with impulses
(r(t)(x′(t))σ)′ +

N∑
i=1

ai(t)x
δ(t− [t]− τi) + p(t)xµ(t) = 0, t 6= tk, t ≥ 0,

x(t) = φ(t),−τ ≤ t ≤ 0, x′(0) = x′0,
x(tk) = Ik(x(t−k )), x′(tk) = Jk(x

′(t−k )), k ∈ Z+,

(1.2)

whereN is any given positive integer,τ = max
1≤i≤N

τi, [t] denotes the maximum of the set

of integers that are smaller than or equal tot, andZ+ is the set of all positive integers.
The following assumptions will be needed throughout the paper:

(H1) the sequencetk satisfies0 ≤ t0 < t1 < . . . < tk < . . ., lim
k→

tk = ∞;

(H2) Ik, Jk : R → R are continuous functions andIk(0) = Jk(0) = 0, k ∈ Z+;

(H3) r, ai, p : [0,∞) → R are continuous functions,i = 1, 2, . . . , N ;

(H4) σ, µ, δ ≥ 1 are constants,τ ≤ 1;

(H5) x′ denotes the right-hand derivative ofx, i.e.,

x′(tk) = x′(t+k ) = lim
h→0+

x(tk + h)− x(t+k )

h
.

Whenai = 0 andµ = 1, (1.2) reduces to the differential equation
(r(t)(x′(t))σ)′ + p(t)x(t) = 0, t 6= tk, t ≥ t0,
x(t0) = x0, x

′(t0) = x′0,
x(tk) = Ik(x(t−k )), x′(tk) = Jk(x

′(t−k )), k ∈ Z+.
(1.3)

Some properties of (1.3) have been extensively investigated in [6]. Furthermore, if
σ = 1 in (1.3), then it reduces to the differential equation

(r(t)x′(t))′ + p(t)x(t) = 0, t 6= tk, t ≥ t0,
x(t0) = x0, x

′(t0) = x′0,
x(tk) = Ik(x(t−k )), x′(tk) = Jk(x

′(t−k )), k ∈ Z+.
(1.4)

Oscillatory properties of (1.4) have been discussed in [10, 12]. In the present paper,
we deal with the more general equation (1.1). We shall investigate the impulsive stabi-
lization of (1.1) by using Lyapunov function and analysis methods. Some new results
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are obtained here. It shows that the impulses do contribute to the equation’s stability
behavior.

In the settings of this paper, according to [9], we can obtain global existence of the
solution of (1.1). So, in this paper, we always assume the solutions of (1.1) and (1.2)
exist globally.

Definition 1.1. A function x : [−τ, a) → R, a > 0 is said to be a solution of system
(1.2) through(0, φ) if

(i) x andx′ are continuous on[−τ, a)\{tk; k ∈ Z+} and are right continuous attk;

(ii) x satisfies (1.1) almost everywhere in(−τ, a);

(iii) x andx′ fulfill the third equality of (1.2) for eachk ∈ Z+.

Definition 1.2. The zero solution of (1.1) is said to be exponentially stabilized by im-
pulses, if there existsα > 0, sequences{tk}∞k=1, Ik, Jk satisfying (H1) and (H2) such
that for allε > 0, there existsδ > 0 with the property that, when the solutionx of (1.1)
through(0, φ) fulfills √

‖ φ ‖2
τ +(x′0)

2 ≤ δ, (1.5)

then √
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ≥ 0, (1.6)

where‖ φ ‖τ= sup
−τ≤s≤0

|φ(s)|.

Definition 1.3. The zero solution of (1.1) is said to be exponentially stabilized by peri-
odic impulses if there existsα > 0, a sequence{tk}∞k=1 satisfying (H1) andtk−tk−1 = d,
whered > 0 is a constant,Ik, Jk satisfying (A2) and

Ik(x) = I(x), Jk(x) = J(x), x ∈ R, k ∈ Z+

such that for allε > 0, there existsδ > 0 such that the solutionx of (1.1) through(0, φ)
with (1.5) fulfills (1.6).

Remark1.4. In the present paper, for convenience, we always supposet0 = 0.

2 Main Results

In this section we shall establish theorems which provide sufficient conditions for expo-
nential stabilization of (1.1) by impulses.

Theorem 2.1.Assume that(H3)–(H5) hold. Moreover, suppose

(H6) there exist constantsr, ai, p ≥ 0, i = 1, 2, . . . , N such that1 ≤ |r(t)| ≤ r,
|p(t)| ≤ p, |ai(t)| ≤ ai, t ≥ 0;
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(H7) we have the inequalitiy

τ <

(
r

N∑
i=1

ai

)−1

exp

(
−

(
1 + rp + r

N∑
i=1

ai

))
.

Then the zero solution of(1.1)can be exponentially stabilized by impulses.

Proof. Since condition (H7) holds, there existsα > 0 such that

r
N∑

i=1

aiτi ≤ rτ

N∑
i=1

ai ≤ exp(−2α) exp

(
−

(
1 + rp + r

N∑
i=1

ai

))
. (2.1)

Consideringτ ≤ 1, we may choose a sequence{tk}∞k=1 = {n}∞n=1. It is obvious that
condition (H1) is satisfied andtk+1− tk = 1 (t0 = 0). On the other hand, we can choose
a sequence{ηk}∞k=1, ηk ∈ (0, 1) that is such that the solutionx(t) = x(t, k, x(k), φ)
beginning witht = k, and √

x2(k) + (x′(k))2 ≤ ηk

satisfies √
x2(t) + (x′(t))2 < 1, t ∈ [k, k + 1). (2.2)

Then let
|Ik(u)| = dk|u|, |Jk(v)| = dk|v|,

dk = min

ηk exp(α),
1

r

√√√√T − r
N∑

i=1

aiτi

 ,

T = exp(−2α) exp

(
−

(
1 + rp + r

N∑
i=1

ai

))
.

With what was mentioned above, in view of (2.1), it is obvious thatdk ≥ 0. For any
ε ∈ (0, 1), let

δ̂ = min


η0, ε,

ε exp(−α)√√√√1 + r2 + r
N∑

i=1

ai

exp

(
−1

2

(
1 + rp + r

N∑
i=1

ai

))


.

Next we prove that for each solutionx(t) = x(t, 0, φ) of (1.2) with√
‖ φ ‖2

τ +(x′0)
2 ≤ δ̂,
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we have √
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ≥ 0.

First, for t ∈ [0, 1), we choose the Lyapunov function

V (t) = x2(t) + r2(t)(x′(t))2σ + r
N∑

i=1

ai

∫ 0

t−τi

x2δ(s)ds.

Considering condition (H6) and (2.2), we have

V (t) ≥ x2(t) + (x′(t))2;

V (t) ≤ x2(t) + r2(x′(t))2σ + r
N∑

i=1

aiτi||φ||2δ
τi

≤ x2(t) + r2(x′(t))2 + r
N∑

i=1

aiτi||φ||2τ

≤

(
1 + r2 + r

N∑
i=1

aiτi

)(
(x′(t))2 + ||φ||2τ

)
;

and whent ∈ (0, 1), if we denote byV ′(t) the right upper derivative ofV (t) along the
solution of (1.2), then in view of (H4), (2.2) and the fact thata2 + b2 ≥ 2|ab| for any
a, b ∈ R, we have

V ′(t) = 2x(t)x′(t) + 2r(t)(x′(t))σ (r(t)(x′(t))σ)
′ − r

N∑
i=1

aix
2δ(t− τi)

= 2x(t)x′(t) + 2r(t)(x′(t))σ

(
−

N∑
i=1

ai(t)x
δ(t− [t]− τi)− p(t)xµ(t)

)

−r

N∑
i=1

aix
2δ(t− τi)

≤ x2(t) + (x′(t))2 + r

N∑
i=1

ai

(
((x′(t))2σ + x2δ(t− τi)

)
+ rp

(
((x′(t))2σ + x2µ(t)

)
−r

N∑
i=1

aix
2δ(t− τi)

= x2(t) + (x′(t))2 + r

N∑
i=1

ai(x
′(t))2σ + rp(x′(t))2σ + rpx2µ(t)

≤ x2(t) + (x′(t))2 + r
N∑

i=1

ai(x
′(t))2 + rp(x′(t))2 + rpx2(t)
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≤

(
1 + rp + r

N∑
i=1

ai

)(
x2(t) + (x′(t))2

)
≤

(
1 + rp + r

N∑
i=1

ai

)
V (t),

which implies that

V (t) ≤ V (0) exp

((
1 + rp + r

N∑
i=1

ai

)
t

)
, t ∈ [0, 1).

So fort ∈ [0, 1), we get

x2(t) + (x′(t))2 ≤ V (t)

≤ V (0) exp

((
1 + rp + r

N∑
i=1

ai

)
t

)

≤ V (0) exp

(
1 + rp + r

N∑
i=1

ai

)

≤

(
1 + r2 + r

N∑
i=1

aiτi

)(
(x′(0))2 + ||φ||2τ

)
exp

(
1 + rp + r

N∑
i=1

ai

)

≤

(
1 + r2 + r

N∑
i=1

aiτi

)
δ̂2 exp

(
1 + rp + r

N∑
i=1

ai

)
≤ ε2 exp(−2α)

≤ ε2 exp(−2αt),

i.e., √
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ∈ [0, 1).

In particular, we get √
x2(1−) + (x′(1−))2 ≤ ε exp(−α).

Consequently, it follows that√
x2(1) + (x′(1))2 = d1

√
x2(1−) + (x′(1−))2

≤ d1ε exp(−α)

≤ d1 exp(−α) = η1,

which implies that fort ∈ [1, 2),√
x2(t) + (x′(t))2 < 1. (2.3)
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For t ∈ [1, 2), we choose the Lyapunov function

V (t) = x2(t) + r2(t) · (x′(t))2σ + r
N∑

i=1

ai

∫ 0

t−1−τi

x2δ(s)ds.

Then in view of (H4) and (2.3), we can obtain that fort ∈ [1, 2),

x2(t) + (x′(t))2 ≤ V (t)

≤ V (1) exp

((
1 + rp + r

N∑
i=1

ai

)
(t− 1)

)

≤ V (1) exp

(
1 + rp + r

N∑
i=1

ai

)

=

(
x2(1) + r2(1)(x′(1))2σ + r

N∑
i=1

ai

∫ 0

−τi

x2δ(s)ds

)
exp

(
1 + rp + r

N∑
i=1

ai

)

≤

{
d2

1

(
x2(1−) + r2(1)(x′(1−))2σ

)
+ r

N∑
i=1

aiτi||φ||2δ
τ

}
exp

(
1 + rp + r

N∑
i=1

ai

)

≤

{
d2

1r
2
(
x2(1−) + (x′(1−))2σ

)
+ r

N∑
i=1

aiτi||φ||2τ

}
exp

(
1 + rp + r

N∑
i=1

ai

)

≤

{
d2

1r
2ε2 exp(−2α) + r

N∑
i=1

aiτiδ̂
2

}
exp

(
1 + rp + r

N∑
i=1

ai

)

≤

{(
d2

1r
2 + r

N∑
i=1

aiτi

)
ε2 exp(−2α)

}
exp

(
1 + rp + r

N∑
i=1

ai

)

≤ Tε2 exp(−2α) exp

(
1 + rp + r

N∑
i=1

ai

)
≤ ε2 exp(−4α)

≤ ε2 exp(−2αt).

Hence, √
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ∈ [1, 2).

Arguing as before by induction hypothesis, we may prove, in general, that fork ≥ 1,√
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ∈ [k, k + 1).

Therefore, we finally obtain√
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ≥ 0.

The proof is complete.



274 X. Li

Remark2.2. In Theorem 2.1, we can choose linear functionsIk(u) = dku, Jk(v) = dkv.
In fact, from the procedure of the proof of Theorem 2.1, it is not difficult to find that we
only needIk(u), Jk(v) satisfying|Ik(u)| ≤ dk|u|, |Jk(v)| ≤ dk|v|.
Remark2.3. In the case ofδ = µ = σ = 1, assume that the conditions in Theorem 2.1
still hold. Then the zero solution of (1.1) can be exponentially stabilized by periodic
impulses.

Proof. Here we also choose the sequence{tk}∞k=1 = {n}∞n=1, t0 = 0. Sinceδ = ρ = 1,
we only need to let

|Ik(u)| = d · |u|, |Jk(v)| = d · |v|,

d =
1

r

√√√√T − r

N∑
i=1

aiτi, T = exp(−2α) exp

(
−

(
1 + rp + r

N∑
i=1

ai

))
,

δ̃ = min


ε,

ε√√√√1 + r2 + r
N∑

i=1

ai

exp(−α) exp

(
−1

2

(
1 + rp + r

N∑
i=1

ai

))


.

Then the rest of the argument is the same as was employed in the proof of Theorem 2.1.
Finally we can prove that each solutionx(t) = x(t, 0, φ) of (1.2) with√

‖ φ ‖2
τ +(x′(0))2 ≤ δ̃

also satisfies √
x2(t) + (x′(t))2 ≤ ε exp(−αt), t ≥ 0,

where‖ φ ‖τ= sup
−τ≤s≤0

|φ(s)|.

3 Applications

We shall give an example to illustrate that the unstable system can be exponentially
stabilized by impulses.

Example 3.1.Consider the equation
(
(1 + e−t)x′(t)

)′
+ 0.125x3(t− [t]− 0.01)

+0.125x3(t− [t]− 0.02) + p(t)x4(t) = 0, t ≥ 0,

x(t) = φ(t) = − 3
√

δ, −0.02 ≤ t ≤ 0,
x′(0) = 1,

(3.1)
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whereδ is a positive constant,p(t) ∈ Γ, Γ = {s(t) ∈ C[0, R) : |s(t)| ≤ 5

4
}. It is not

difficult to prove that whenp(t) = 0 ∈ Γ, t ≥ 0,

x′(t) =
2 + 0.25δ · t

1 + e−t
≥ 2 + 0.25δ · t

2
, t ≥ 0.

So onceδ is given, it is obvious thatx(t) → ∞, t → ∞. Hence the nonimpulsive
equations (3.1) is unstable forp(t) = 0. However, considering the effect of impulses,

we may chooseα = 0.1, τ = 0.02, ai = 0.125, i = 1, 2, p =
5

4
, r = 1. Then we have

1 ≤ r(t) ≤ 2. It is easy to check that

τ = 0.02 < 2 exp(−4) =

(
r

2∑
i=1

ai

)−1

exp

(
−

(
1 + rp + r

2∑
i=1

ai

))
.

Therefore, the hypotheses in Theorem 2.1 are satisfied and hence the unstable equations
(3.1) can be exponentially stabilized by impulses for allp(t) ∈ Γ.

Remark3.2. In Example 3.1, we can find that the solution of (3.1) without impulses
effect is unstable. However, the stability is totally controlled by the functione−0.1t under
proper impulses effect, which shows that the impulses do contribute to the equation’s
stability behavior.
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