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Abstract

This paper is concerned with oscillation of the second-order half-linear delay
dynamic equation

(r(t)(x∆)γ)∆ + p(t)xγ(τ(t)) = 0,

on a time scaleT where0 < γ ≤ 1 is the quotient of odd positive integers,
p : T → [0,∞), andτ : T → T are positive rd-continuous functions,r(t) is a
positive and (delta) differentiable function,τ(t) ≤ t, and lim

t→∞
τ(t) = ∞. We es-

tablish some new sufficient conditions which ensure that every solution oscillates
or converges to zero. Our results in the special cases whenT = R andT = N
involve and improve some oscillation results for second-order differential and dif-
ference equations; and whenT = hN, T = qN0 andT = N2 our oscillation results
are essentially new. Some examples illustrating the importance of our results are
also included.
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1 Introduction

The theory of time scales, which has recently received a lot of attention, was introduced
by Stefan Hilger in his PhD Thesis in 1988 in order to unify continuous and discrete
analysis, see [12]. A time scaleT is an arbitrary closed subset of the reals, and the cases
when this time scale is equal to the reals or to the integers represent the classical theo-
ries of differential and of difference equations. Many other interesting time scales exist,
and they give rise to many applications (see [5]). This theory of these so-called “dy-
namic equations” not only unifies the corresponding theories for the differential equa-
tions and difference equations cases, but it also extends these classical cases to cases
“in between”. That is, we are able to treat the so-calledq-difference equations when
T =qN0 := {qn : n ∈ N0 for q > 1} (which has important applications in quantum the-
ory (see [13])) and can be applied to different types of time scales likeT =hN, T = N2

andT = Tn the set of the harmonic numbers. The books on the subject of time scales
by Bohner and Peterson [5, 6] summarize and organize much of time scale calculus. In
the last few years, there has been increasing interest in obtaining sufficient conditions
for the oscillation/nonoscillation of solutions of different classes of dynamic equations
on time scales, and we refer the reader to the papers [1, 4, 8, 10, 11, 14] and the refer-
ences cited therein. In this paper, we are concerned with the oscillatory behavior of the
second-order half-linear delay dynamic equation

(r(t)
(
x∆(t)

)γ
)∆ + p(t)xγ(τ(t)) = 0, (1.1)

on an arbitrary time scaleT, where0 < γ ≤ 1 is a quotient of odd positive integers,p is a
positive rd-continuous function onT, r(t) is a positive and (delta) differentiable function
and the so-called delay functionτ : T → T satisfiesτ(t) ≤ t for t ∈ T and lim

t→∞
τ(t) =

∞. Since we are interested in the oscillatory and asymptotic behavior of solutions
near infinity, we assume thatsup T = ∞, and define the time scale interval[t0,∞)T by
[t0,∞)T := [t0,∞)∩T. By a solution of (1.1) we mean a nontrivial real-valued function
x ∈ C1

r [Tx,∞), Tx ≥ t0 which has the property thatr(t)
(
x∆(t)

)γ ∈ C1
r [Tx,∞) and

satisfies equation (1.1) on[Tx,∞), whereCr is the space ofrd-continuous functions.
The solutions vanishing in some neighborhood of infinity will be excluded from our
consideration. A solutionx of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is nonoscillatory. Recently there has also
been a spate of papers on second-order nonlinear dynamic equations on time scales. For
a few examples of work since then, Agarwal et al. [1] considered the second-order delay
dynamic equations on time scales

x∆∆(t) + p(t)x(τ(t)) = 0, (1.2)

and established some sufficient conditions for oscillation of (1.2). Erbe et al. [9] consid-
ered the pair of second-order dynamic equations

(r(t)(x∆(t))γ)∆ + p(t)xγ(t) = 0, (1.3)
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(r(t)(x∆(t))γ)∆ + p(t)xγ(σ(t)) = 0,

and established some necessary and sufficient conditions for nonoscillation of Hille–
Kneser type. Saker [14] examines oscillation for half-linear dynamic equations on time
scales (1.3), whereγ > 1 is an odd positive integer and Agarwal et al. [3] studies
oscillation for the same equation (1.3), whereγ > 1 is the quotient of odd positive
integers. Hassan [11] improved Agarwal’s and Saker’s results for the equation (1.3),
whenγ > 0 is the quotient of odd positive integers. Erbe et al. [7] considered the
half-linear delay dynamic equations on time scales

(r(t)(x∆(t))γ)∆ + p(t)xγ(τ(t)) = 0,

whereγ > 1 is the quotient of odd positive integers.
We herein utilize a Riccati transformation technique to establish oscillation criteria

for (1.1), where0 < γ ≤ 1 is the quotient of odd positive integers, which complete,
improve and generalize the results that have been established by Agarwal et al. [3],
Saker [14], Erbe et al. [7] and others. Also, interesting examples that illustrate the
importance of our results are included in Section 4.

2 Main Results

Throughout the paper we assume that

r∆(t) ≥ 0, and
∫ ∞

t0

τ γ(t)p(t)∆t = ∞ (2.1)

is satisfied. Before stating our main results, we begin with the following lemma which
will play an important role in the proof of our main results.

Lemma 2.1. [7] Assume that(2.1)and∫ ∞

t0

∆t

r
1
γ (t)

= ∞ (2.2)

hold and(1.1)has a positive solutionx on [t0,∞)T. Then there exists aT ∈ [t0,∞)T,
sufficiently large, so that

(i) x∆(t) > 0, x∆∆(t) < 0, x(t) > tx∆(t), for t ∈ [T,∞)T;

(ii)
x(t)

t
is strictly decreasing on[T,∞)T.

Motivated by [7, Theorem 2.9], we can prove the following result which is a new
oscillation result for equation (1.1).



230 L. Erbe, T. Hassan, A. Peterson, and S. Saker

Theorem 2.2. Assume that(2.1)and (2.2)hold. Furthermore, assume that there exists
a positive∆-differentiable functionδ(t) such that

lim sup
t→∞

∫ t

t0

[
δ(s)p(s)

(
τ(s)

σ(s)

)γ

− r(s)((δ∆(s))+)γ+1

δγ(s)(γ + 1)γ+1

]
∆s = ∞, (2.3)

whered+(t) := max{d(t), 0} is the positive part of any functiond(t). Then every
solution of equation(1.1) is oscillatory on[t0,∞)T.

Proof. Assume (1.1) has a nonoscillatory solution on[t0,∞)T. Then, without loss of
generality, there is at1 ∈ [t0,∞)T such thatx(t) satisfies the conclusions of Lemma
2.1 on[t1,∞)T with x(τ(t)) > 0 on [t1,∞)T. Let δ(t) be a positive∆ differentiable
function and consider the generalized Riccati substitution

w(t) = δ(t)r(t)

(
x∆(t)

x(t)

)γ

.

Then by Lemma 2.1, we see that the functionw(t) is positive on[t1,∞)T. By the
product rule and then the quotient rule (suppressing arguments)

w∆ = δ∆

(
r(x∆)γ

xγ

)σ

+ δ

(
r(x∆)γ

xγ

)∆

=
δ∆

δσ
wσ + δ

xγ(r(x∆)γ)∆ − r(x∆)γ(xγ)∆

xγxγσ

=
δ∆

δσ
wσ +

δxγ(−pxτγ)

xγ(xσ)γ
− δr(x∆)γ(xγ)∆

xγ(xσ)γ

=
δ∆

δσ
wσ − pδ

(
xτ

xσ

)γ

− δ
r(x∆)γ(xγ)∆

xγ(xσ)γ
.

Using the fact that
x(t)

t
andr(t)(x∆(t))γ are decreasing (from Lemma 2.1) we get

xτ (t)

xσ(t)
≥ τ(t)

σ(t)
and r(t)(x∆(t))γ ≥ rσ(t)(x∆(t))γσ.

By these last two inequalities we obtain

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− δ
rσ(x∆σ)γ(xγ)∆

xγ(xσ)γ
. (2.4)

By the P̈otzsche chain rule (see [5, Theorem 1.90]), and the fact thatx∆(t) > 0, we
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obtain

(xγ)∆ (t) = γ

∫ 1

0

[
x(t) + hµ(t)x∆(t)

]γ−1
dh x∆(t)

= γ

∫ 1

0

[(1− h) x(t) + hxσ(t)]γ−1 dh x∆(t)

≥ γ

∫ 1

0

(xσ(t))γ−1 dh x∆(t)

= γ(xσ(t))γ−1x∆(t). (2.5)

Using (2.4) and (2.5), we have that

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− γδ
rσ(x∆σ)γx∆

xγxσ
.

Since

x∆(t) ≥ (rσ(t))
1
γ (x∆(t))σ

r
1
γ (t)

, and xσ(t) ≥ x(t),

we get that

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− γ
δrσ(1+ 1

γ
)

r
1
γ

(
x∆σ

xσ

)γ+1

.

Using the definition ofw we finally obtain

w∆ ≤ (δ∆)+

δσ
wσ − δp

( τ

σ

)γ

− γ
δ

(δσ)λr
1
γ

(wσ)λ, (2.6)

whereλ :=
γ + 1

γ
. DefineA ≥ 0 andB ≥ 0 by

Aλ :=
γδ

(δσ)λr
1
γ

(wσ)λ, Bλ−1 :=
r

1
γ+1

λ(γδ)
1
λ

(δ∆)+.

Then, using the inequality

λABλ−1 − Aλ ≤ (λ− 1)Bλ,

we get that

(δ∆)+

δσ
wσ − γ

δ

(δσ)λr
1
γ

(wσ)λ = λABλ−1 − Aλ

≤ (λ− 1)Bλ

≤ r((δ∆)+)γ+1

δγ(γ + 1)γ+1
.
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By this last inequality and (2.6) we get

w∆ ≤ r((δ∆)+)γ+1

δγ(γ + 1)γ+1
− δp

( τ

σ

)γ

.

Integrating both sides fromt1 to t we get

−w(t1) ≤ w(t)− w(t1) ≤
∫ t

t1

[
r((δ∆)+)γ+1

δγ(γ + 1)γ+1
− δp

( τ

σ

)γ
]

∆s,

which leads to a contradiction, since the right-hand side tends to−∞ by (2.3).

We introduce the notation

p∗ := lim inf
t→∞

tγ

r(t)

∫ ∞

σ(t)

P (s)∆s, q∗ := lim inf
t→∞

1

t

∫ t

T

sγ+1

r(s)
P (s)∆s,

r∗ := lim inf
t→∞

tγwσ(t)

r (t)
, R := lim sup

t→∞

tγwσ(t)

r(t)
,

whereP (t) =

(
τ(t)

σ(t)

)γ

p(t) and assume thatl := lim inf
t→∞

t

σ(t)
. Note that0 ≤ l ≤ 1. In

order for the definition ofp∗ to make sense we assume that∫ ∞

t0

P (s)∆s =

∫ ∞

t0

p(s)

(
τ(s)

σ(s)

)γ

∆s < ∞. (2.7)

Theorem 2.3.Assume that(2.1), (2.2)and (2.7)hold. Furthermore, assume thatl > 0
and

p∗ >
γγ

lγ2(γ + 1)γ+1
, (2.8)

or

p∗ + q∗ >
1

lγ(γ+1)
. (2.9)

Then every solution of equation(1.1) is oscillatory on[t0,∞)T.

Proof. Assume (1.1) has a nonoscillatory solution on[t0,∞)T. Then, without loss of
generality, there is aT ∈ (t0,∞)T such thatx(t) satisfies the conclusions of Lemma 2.1
on [T,∞)T with x(τ(t)) > 0 on [T,∞)T. Again we definew(t) as in Theorem 2.2 with
δ(t) = 1. We get from (2.6) that

−w∆(t) ≥ P (t) +
γ

r
1
γ (t)

(wσ(t))
γ+1

γ , for t ∈ [T,∞)T. (2.10)

First, we assume (2.8) holds. It follows from Lemma 2.1 that

w(t) = r(t)

(
x∆(t)

x(t)

)γ

<

(∫ t

t0

∆s

r
1
γ (s)

)−γ

, for t ∈ [T,∞)T,
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which implies (using (2.2)) thatlim
t→∞

w(t) = 0. Integrating (2.10) fromσ(t) to∞ and

using lim
t→∞

w(t) = 0, we have

wσ(t) ≥
∫ ∞

σ(t)

P (s)∆s + γ

∫ ∞

σ(t)

(wσ(s))
1
γ wσ(s)

r
1
γ (s)

∆s. (2.11)

It follows from (2.11) that

tγwσ(t)

r(t)
≥ tγ

r(t)

∫ ∞

σ(t)

P (s)∆s + γ
tγ

r(t)

∫ ∞

σ(t)

(wσ(s))
1
γ wσ(s)

r
1
γ (s)

∆s. (2.12)

Let ε > 0. Then by the definition ofp∗ andr∗ we can pickt1 ∈ [T,∞)T, sufficiently
large, so that

tγ

r(t)

∫ ∞

σ(t)

P (s)∆s ≥ p∗ − ε, and
tγwσ(t)

r(t)
≥ r∗ − ε, (2.13)

for t ∈ [t1,∞)T. From (2.12) and (2.13) and using the factr∆(t) ≥ 0, we get that

tγwσ(t)

r(t)
≥ (p∗ − ε) + γ

tγ

r(t)

∫ ∞

σ(t)

s (wσ(s))
1
γ sγwσ(s)

sγ+1r
1
γ (s)

∆s

≥ (p∗ − ε) + (r∗ − ε)1+ 1
γ

tγ

r(t)

∫ ∞

σ(t)

γr(s)

sγ+1
∆s

≥ (p∗ − ε) + (r∗ − ε)1+ 1
γ tγ

∫ ∞

σ(t)

γ

sγ+1
∆s. (2.14)

Using the P̈otzsche chain rule [5, Theorem 1.90], we get(
−1

sγ

)∆

= γ

∫ 1

0

1

[s + hµ(s)]γ+1
dh

≤
∫ 1

0

( γ

sγ+1

)
dh

=
γ

sγ+1
. (2.15)

Then from (2.14) and (2.15), we have

tγwσ(t)

r(t)
≥ (p∗ − ε) + (r∗ − ε)1+ 1

γ

(
t

σ(t)

)γ

.

Taking thelim inf of both sides ast →∞ we get that

r∗ ≥ p∗ − ε + (r∗ − ε)1+ 1
γ lγ.
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Sinceε > 0 is arbitrary, we get

p∗ ≤ r∗ − r
1+ 1

γ
∗ lγ. (2.16)

Using the inequality

Bu− Au
γ+1

γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
,

with B = 1 andA = lγ we get that

p∗ ≤
γγ

lγ2(γ + 1)γ+1
,

which contradicts (2.8). Next, we assume (2.9) holds. Multiplying both sides of (2.10)

by
tγ+1

r(t)
, and integrating fromT to t (t ≥ T ) we get

∫ t

T

sγ+1

r(s)
w∆(s)∆s ≤ −

∫ t

T

sγ+1

r(s)
P (s)∆s− γ

∫ t

T

(
sγwσ(s)

r(s)

) γ+1
γ

∆s.

Using integration by parts, we obtain

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
+

∫ t

T

(
sγ+1

r(s)

)∆

wσ(s)∆s−
∫ t

T

sγ+1

r(s)
P (s)∆s

−γ

∫ t

T

(
sγwσ(s)

r(s)

) γ+1
γ

∆s.

By the quotient rule and applying the Pötzsche chain rule,(
sγ+1

r(s)

)∆

=
(sγ+1)∆

rσ(s)
− sγ+1r∆(s)

r(s)rσ(s)

≤ (γ + 1)σγ(s)

rσ(s)

≤ (γ + 1)σγ(s)

r(s)
. (2.17)

Hence

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
P (s)∆s +

∫ t

T

(γ + 1)

(
σγ(s)wσ(s)

r(s)

)
∆s

− γ

∫ t

T

(
sγwσ(s)

r(s)

) γ+1
γ

∆s.
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Let 0 < ε ≤ l be given. Then using the definition ofl, we can assume, without loss of
generality, thatT is sufficiently large so that

s

σ(s)
> l − ε, s ≥ T.

It follows that

σ(s) ≤ Ks, s ≥ T where K :=
1

l − ε
.

We then get that

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
P (s)∆s

+

∫ t

T

{(γ + 1)Kγ sγwσ(s)

r(s)
− γ

(
sγwσ(s)

r(s)

) γ+1
γ

}∆s.

Let

u(s) :=
sγwσ(s)

r(s)
.

Then

uλ(s) =

(
sγwσ(s)

r(s)

)λ

,

whereλ =
γ + 1

γ
. It follows that

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
P (s)∆s

+

∫ t

T

{(γ + 1)Kγu(s)− γuλ(s)}∆s.

Again, using the inequality

Bu− Auλ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
,

whereA, B are constants, we get

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
P (s)∆s

+

∫ t

T

γγ

(γ + 1)γ+1

[(γ + 1)Kγ]γ+1

γγ
∆s

≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
P (s)∆s + Kγ(γ+1)(t− T ).
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It follows from this that

tγw(t)

r(t)
≤

T γ+1w(T )
r(T )

t
− 1

t

∫ t

T

sγ+1

r(s)
P (s)∆s + Kγ(γ+1)

(
1− T

t

)
.

Sincewσ(t) ≤ w(t) we get

tγwσ(t)

r(t)
≤

T γ+1w(T )
r(T )

t
− 1

t

∫ t

T

sγ+1

r(s)
P (s)∆s + Kγ(γ+1)

(
1− T

t

)
.

Taking thelim sup of both sides ast →∞ we obtain

R ≤ −q∗ + Kγ(γ+1) = −q∗ +
1

(l − ε)γ(γ+1)
.

Sinceε > 0 is arbitrary, we get that

R ≤ −q∗ +
1

lγ(γ+1)
.

Using this and the inequality (2.16) we get

p∗ ≤ r∗ − lγr
1+ 1

γ
∗ ≤ r∗ ≤ R ≤ −q∗ +

1

lγ(γ+1)
.

Therefore

p∗ + q∗ ≤
1

lγ(γ+1)
,

which contradicts (2.9).

Remark2.4. We give an example which shows that the inequality (2.8) and hence the
inequality (2.9) cannot be weakened. To see this letT = [1,∞), r(t) = 1, and

p(t) :=
γγ+1

(γ + 1)γ+1

1

tγ+1
, t ≥ 1.

We have that

p∗ = lim inf
t→∞

tγ
∫ ∞

t

p(s)ds =
γγ

(γ + 1)γ+1
,

and the second-order half-linear differential equation(
(x′(t))

γ)′
+ p(t)xγ(t) = 0,

has a nonoscillatory solutionx(t) = t
γ

γ+1 . This shows that the constant
γγ

(γ + 1)γ+1
is

sharp for the oscillation for all solutions of this equation. Note in the case whenγ = 1

this constant is
1

4
.
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Theorem 2.5.Assume that(2.1)and (2.2)hold and

lim sup
t→∞

tγ

r(t)

∫ ∞

t

p(s)

(
τ(s)

s

)γ

∆s > 1. (2.18)

Then every solution of(1.1) is oscillatory on[t0,∞)T.

Proof. Assumex is an eventually positive solution of (1.1) on[t0,∞)T. Using Lemma
2.1 there is at1 ∈ [t0,∞)T such that

x(t) > 0, x(τ(t)) > 0, x∆(t) > 0, x∆∆(t) < 0,
x(t)

t
> x∆(t),

on [t1,∞)T and
x(t)

t
is strictly decreasing on[t1,∞)T. Then integrating both sides of

the dynamic equation (1.1) fromt to T , T ≥ t ≥ t1, we obtain∫ T

t

p(s)xγ(τ(s))∆s = r(t)(x∆(t))γ − r(T )(x∆(T ))γ.

Sincex∆(t) > 0, we get that

1

r(t)

∫ T

t

p(s)xγ(τ(s))∆s ≤ (x∆(t))γ.

Since
x(t)

t
is strictly decreasing and usingx∆(t) <

x(t)

t
we obtain

1

r(t)

∫ T

t

p(s)

(
τ(s)

s

)γ

xγ(s)∆s ≤ xγ(t)

tγ
.

Sincex(t) is increasing we get

tγ

r(t)

∫ T

t

p(s)

(
τ(s)

s
,

)γ

∆s ≤ 1

which implies that
tγ

r(t)

∫ ∞

t

p(s)

(
τ(s)

s

)γ

∆s ≤ 1,

which gives us the contradiction

lim sup
t→∞

tγ

r(t)

∫ ∞

t

p(s)

(
τ(s)

s

)γ

∆s ≤ 1.

This concludes the proof.
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In the following, we assume that∫ ∞

t0

∆t

r
1
γ (t)

< ∞ (2.19)

holds and establish some sufficient conditions which ensure that every solutionx(t) of
(1.1) oscillates or converges to zero. The proof is similar to the proof of [14, Theorem
3.3] and hence is omitted.

Theorem 2.6.Assume that(2.1), (2.19)and∫ ∞

t0

[
1

r(t)

∫ t

t0

p(s)∆s

] 1
γ

∆t = ∞ (2.20)

hold. If one of the conditions(2.3)or (2.18)holds, then every solution of(1.1)oscillates
or converges to zero on[t0,∞)T.

3 Applications

In this section, we apply the oscillation criteria to various time scales. For example if

T = R, thenσ(t) = t, µ(t) = 0, f∆(t) = f ′(t),
∫ b

a

f(t)∆t =

∫ b

a

f(t)dt, and (1.1)

becomes the sublinear half-linear delay differential equation(
r(t) (x′(t))

γ)′
+ p(t)xγ(τ(t)) = 0. (3.1)

Then we have from Theorems 2.2–2.6 the following oscillation criteria for equation
(3.1).

Theorem 3.1.Assume that

r′(t) ≥ 0,

∫ ∞

t0

τ γ(t)p(t)dt = ∞ (3.2)

and ∫ ∞

t0

dt

r
1
γ (t)

= ∞ (3.3)

hold. Furthermore, assume that there exists a positive differentiable functionδ(t) such
that

lim sup
t→∞

∫ t

t0

[
δ(s)p(s)

(
τ(s)

s

)γ

− r(s)((δ′)+(s))γ+1

δγ(s)(γ + 1)γ+1

]
ds = ∞, (3.4)

whered+(t) := max{d(t), 0} is the positive part of any functiond(t). Then every
solution of equation(3.1) is oscillatory on[t0,∞).
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Theorem 3.2.Assume that(3.2), (3.3)and∫ ∞

t0

p(s)

(
τ(s)

s

)γ

ds < ∞

hold. Furthermore, assume

p∗ >
γγ

(γ + 1)γ+1
, (3.5)

or
p∗ + q∗ > 1, (3.6)

where

p∗ = lim inf
t→∞

tγ

r(t)

∫ ∞

t

(
τ(s)

s

)γ

p(s)ds,

and

q∗ = lim inf
t→∞

1

t

∫ t

T

sτ γ(s)

r(s)
p(s)ds.

Then every solution of equation(3.1) is oscillatory on[t0,∞).

Theorem 3.3.Assume that(3.2)and (3.3)hold. Furthermore, assume

lim sup
t→∞

tγ

r(t)

∫ ∞

t

p(s)

(
τ(s)

s

)γ

ds > 1. (3.7)

Then every solution of(3.1) is oscillatory on[t0,∞).

Theorem 3.4.Assume that(3.2)and∫ ∞

t0

dt

r
1
γ (t)

< ∞

hold. Furthermore, assume that∫ ∞

t0

[
1

r(t)

∫ t

t0

p(s)ds

] 1
γ

dt = ∞

hold. If one of the conditions(3.4)or (3.7)holds, then every solution of(3.1)oscillates
or converges to zero on[t0,∞).

If T = Z, thenσ(t) = t + 1, µ(t) = 1, f∆(t) = ∆f(t),
∫ b

a

f(t)∆t =
b−1∑
t=a

f(t), and

(1.1) becomes the sublinear half-linear delay difference equation

∆(r(t) (∆x(t))γ) + p(t)xγ(τ(t)) = 0. (3.8)

Then we have from Theorems 2.2–2.6 the following oscillation criteria for equation
(3.8).
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Theorem 3.5.Assume that

∆r(t) ≥ 0,
∞∑

t=t0

τ γ(t)p(t) = ∞ (3.9)

and
∞∑

t=t0

1

r
1
γ (t)

= ∞ (3.10)

hold. Furthermore, assume that there exists a positive sequenceδ(t) such that

lim sup
t→∞

t−1∑
t=t0

[
δ(s)p(s)

(
τ(s)

s + 1

)γ

− r(s)((∆δ(s))+)γ+1

δγ(s)(γ + 1)γ+1

]
= ∞, (3.11)

whered+(t) := max{d(t), 0} is the positive part of any sequenced(t). Then every
solution of equation(3.8) is oscillatory onN.

Theorem 3.6.Assume that(3.9), (3.10), and

∞∑
s=t0

(
τ(s)

s + 1

)γ

p(s) < ∞

hold. Furthermore, assume

p∗ >
γγ

(γ + 1)γ+1
, (3.12)

or
p∗ + q∗ > 1, (3.13)

where

p∗ = lim inf
t→∞

tγ

r(t)

∞∑
s=t+1

(
τ(s)

s + 1

)γ

p(s),

and

q∗ = lim inf
t→∞

1

t

t∑
s=N

sγ+1

r(s)

(
τ(s)

s + 1

)γ

p(s),

whereN is sufficiently large. Then every solution of equation(3.8) is oscillatory onN.

Theorem 3.7.Assume that(3.9)and (3.10)hold. Furthermore, assume that

lim sup
t→∞

tγ

r(t)

∞∑
s=t

p(s)

(
τ(s)

s

)γ

> 1 (3.14)

Then every solution of(3.8) is oscillatory onN.
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Theorem 3.8.Assume that(3.9)and
∞∑

t=t0

1

r
1
γ (t)

< ∞

hold. Furthermore, assume

∞∑
t=t0

[
1

r(t)

t−1∑
s=t0

p(s)

] 1
γ

= ∞.

If one of the conditions(3.11)or (3.14)holds, then every solution of(3.8)oscillates or
converges to zero onN.

Similarly, we can state oscillation criteria for many other time scales, e.g.,T = hZ,
T = {t : t = qk, k ∈ N0, q > 1}, T = N2

0 := {n2 : n ∈ N0}, or T = {Hn : n ∈ N}

whereHn is the so-calledn-th harmonic number defined byH0 = 0, Hn =
n∑

k=1

1

k
,

n ∈ N0.

4 Examples

In this section we give some examples to illustrate our main results.

Example 4.1.Consider the half-linear delay dynamic equation(
tγ
(
x∆(t)

)γ)∆
+

α

t

(
σ(t)

τ(t)

)γ

xγ(τ(t)) = 0, (4.1)

for t ∈ [t0,∞)T, whereα is a positive constant and0 < γ ≤ 1 is the quotient of odd

positive integers andτ(t) ≤ t. Herep(t) =
α

t

(
σ(t)

τ(t)

)γ

andr(t) = tγ. It is clear that∫ ∞

t0

τ γ(t)p(t)∆t = α

∫ ∞

t0

σγ(t)

t
∆t ≥ α

∫ ∞

t0

∆t

t1−γ
= ∞,

and ∫ ∞

t0

∆t

r
1
γ (t)

=

∫ ∞

t0

∆t

t
= ∞, for 0 < γ ≤ 1,

by [6, Example 5.60]. (i.e., (2.1) and (2.2) hold). To apply Theorem 2.2, withδ(t) = t,
it remains to prove that condition (2.3) holds. To see this note that

lim sup
t→∞

∫ t

t0

[
sp(s)

(
τ(s)

σ(s)

)γ

− r(s)

(γ + 1)γ+1sγ

]
∆s

=

(
α− 1

(γ + 1)γ+1

)
lim sup

t→∞

∫ t

t0

∆s = ∞,
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if α >
1

(γ + 1)γ+1
. We conclude, by Theorem 2.2, that if

α >
1

(γ + 1)γ+1
,

then every solution of (4.1) is oscillatory.

Example 4.2.Consider the half-linear delay dynamic equation((
x∆(t)

)γ)∆
+ p(t)xγ(τ(t)) = 0, (4.2)

wherep(t) :=
β

tγ+1

(
σ(t)

τ(t)

)γ

with τ(t) ≤ t, r(t) = 1, whereβ is a positive constant

and0 < γ ≤ 1 is the quotient of odd positive integers. It is clear that conditions (2.1)
and (2.2) are satisfied since∫ ∞

t0

τ γ(t)p(t)∆t = β

∫ ∞

t0

(
σ(t)

t

)γ

· 1

t
∆t ≥ β

∫ ∞

t0

∆t

t
= ∞,

and ∫ ∞

t0

∆t

r
1
γ (t)

=

∫ ∞

t0

∆t = ∞,

by [6, Example 5.60]. For equation (4.2), we have

p∗ = lim inf
t→∞

tγ
∫ ∞

σ(t)

p(s)

(
τ(s)

σ(s)

)γ

∆s

= β lim inf
t→∞

tγ
∫ ∞

σ(t)

∆s

sγ+1
.

But, by the P̈otzsche chain rule(
− 1

tγ

)∆

= γ

∫ 1

0

1

(t + hµ(t))γ+1
dh ≤ γ

∫ 1

0

1

tγ+1
dh =

γ

tγ+1
,

so we get that

p∗ ≥
β

γ
lim inf

t→∞

(
t

σ(t)

)γ

=
β

γ
lγ.

So if

β >
γγ+1

lγ(γ+1)(γ + 1)γ+1
,

then (2.7) and (2.8) hold and we have by Theorem 2.3 that (4.2) is oscillatory ifβ >
γγ+1

lγ(γ+1)(γ + 1)γ+1
.
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Note that in the caseT = R, τ(t) = t andγ = 1, we get thatl = 1 and we see

thatβ >
1

4
which is the sharp condition for the Euler–Cauchy differential equation to

be oscillatory (see [1] for related results for the delay case). Also, note that the results
by Agarwal et al. [2] and Thandapani et al. [15] cannot be applied to equation (4.2) in
the cases of differential and difference equations.

Example 4.3.Consider the half-linear delay dynamic equation

(
tγ
(
x∆(t)

)γ)∆
+

tγ−1

τ γ(t)
xγ(τ(t)) = 0, (4.3)

for t ∈ [t0,∞)T, where0 < γ ≤ 1 is the quotient of odd positive integers andτ(t) ≤ t.

Herep(t) =
tγ−1

τ γ(t)
andr(t) = tγ. It is clear that condition (2.1) is satisfied since

∫ ∞

t0

∆t

t1−γ
= ∞, for 0 < γ ≤ 1,

by [6, Example 5.60]. As in Example 4.1, it is clear that condition (2.2) holds. To apply
Theorem 2.5, it remains to prove that condition (2.18) holds. To see this note that

lim sup
t→∞

tγ

r(t)

∫ ∞

t

p(s)

(
τ(s)

s

)γ

∆s = lim sup
t→∞

∫ ∞

t

∆s

s
= ∞.

Then, by Theorem 2.5 every solution of (4.3) is oscillatory.

Example 4.4.Consider the half-linear delay dynamic equation

(
tγ+1

(
x∆(t)

)γ)∆
+

(
σ(s)

τ(s)

)γ

xγ(τ(t)) = 0, (4.4)

for t ∈ [t0,∞)T, where0 < γ ≤ 1 is the quotient of odd positive integers. In this case

p(t) =

(
σ(s)

τ(s)

)γ

andr(t) = tγ+1. It is clear that (2.1) holds. Also

∫ ∞

t0

∆t

t
γ+1

γ

< ∞, 0 < γ ≤ 1,

for those time scales[t0,∞)T, where
∫ ∞

t0

1

tp
∆t < ∞ whenp > 1, and hence (2.19)

holds for such time scales. The condition
∫ ∞

t0

1

tp
∆t < ∞ whenp > 1 holds for many

time scales (see [6, Theorems 5.64 and 5.65], and see [6, Example 5.63] where this



244 L. Erbe, T. Hassan, A. Peterson, and S. Saker

result does not hold). To see that (2.20) holds note that∫ ∞

t0

[
1

r(t)

∫ t

t0

p(s)∆s

] 1
γ

∆t =

∫ ∞

t0

[
1

tγ+1

∫ t

t0

(
σ(s)

τ(s)

)γ

∆s

] 1
γ

∆t

≥
∫ ∞

t0

[
1

tγ+1

∫ t

t0

∆s

] 1
γ

∆t

=

∫ ∞

t0

[
t− t0
tγ+1

] 1
γ

∆t.

We can find0 < k < 1 such thatt− t0 > kt, for t ≥ tk > t0. Therefore, we get∫ ∞

t0

[
1

r(t)

∫ t

t0

p(s)∆s

] 1
γ

∆t ≥ k
1
γ

∫ ∞

tk

[
1

tγ+1

∫ t

tk

∆s

] 1
γ

∆t = k
1
γ

∫ ∞

tk

1

t
∆t = ∞.

To apply Theorem 2.6, it remains to prove that the condition (2.3) holds. To see this
note that ifδ(t) = 1, then

lim sup
t→∞

∫ t

t0

δ(s)p(s)

(
τ(s)

σ(s)

)γ

−
r(s)

((
δ∆(s)

)
+

)γ+1

δγ(γ + 1)γ+1

∆s =

∫ ∞

t0

∆t = ∞.

We conclude that if[t0,∞)T is a time scale where
∫ ∞

t0

1

tp
∆t < ∞ whenp > 1, then,

by Theorem 2.6, every solution of (4.4) is oscillatory or converges to zero.
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