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Abstract

This paper is concerned with oscillation of the second-order half-linear delay
dynamic equation
(r(t)(@))> + p()2 (7(t)) = 0,

on a time scalél' where0 < v < 1 is the quotient of odd positive integers,

p: T — [0,00), andT : T — T are positive rd-continuous functions(t) is a
positive and (delta) differentiable function(t) < ¢, andtlirgo 7(t) = co. We es-
tablish some new sufficient conditions which ensure that every solution oscillates
or converges to zero. Our results in the special cases WhenR andT = N
involve and improve some oscillation results for second-order differential and dif-
ference equations; and wh&h= AN, T = qNO andT = N? our oscillation results

are essentially new. Some examples illustrating the importance of our results are
also included.
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1 Introduction

The theory of time scales, which has recently received a lot of attention, was introduced
by Stefan Hilger in his PhD Thesis in 1988 in order to unify continuous and discrete
analysis, see [12]. A time scdleis an arbitrary closed subset of the reals, and the cases
when this time scale is equal to the reals or to the integers represent the classical theo-
ries of differential and of difference equations. Many other interesting time scales exist,
and they give rise to many applications (see [5]). This theory of these so-called “dy-
namic equations” not only unifies the corresponding theories for the differential equa-
tions and difference equations cases, but it also extends these classical cases to cases
“in between”. That is, we are able to treat the so-calledifference equations when

T =¢"° := {¢" : n € N, for ¢ > 1} (which has important applications in quantum the-

ory (see [13])) and can be applied to different types of time scalelik&N, T = N?

andT = T, the set of the harmonic numbers. The books on the subject of time scales
by Bohner and Peterson [5, 6] summarize and organize much of time scale calculus. In
the last few years, there has been increasing interest in obtaining sufficient conditions
for the oscillation/nonoscillation of solutions of different classes of dynamic equations
on time scales, and we refer the reader to the papers [1, 4,8, 10, 11, 14] and the refer-
ences cited therein. In this paper, we are concerned with the oscillatory behavior of the
second-order half-linear delay dynamic equation

(r(t) (#2(8) )% + p(t)2" (7(1)) = 0, (1.1)

on an arbitrary time scalg, where) < v < 1is a quotient of odd positive integeysis a
positive rd-continuous function 6h, r(¢) is a positive and (delta) differentiable function
and the so-called delay function: T — T satisfiesr(¢) < ¢fort € T andtlim T(t) =

oco. Since we are interested in the oscillatory and asymptotic behavior of solutions
near infinity, we assume thatp T = oo, and define the time scale interjaJ, oo)r by

[to, 00)1 := [to, 00)NT. By a solution of (1.1) we mean a nontrivial real-valued function

z € CMT,,00), T, > t, which has the property that(t) (z*(¢))" € C}T,,0o0) and
satisfies equation (1.1) dff,,, co), whereC, is the space ofd-continuous functions.

The solutions vanishing in some neighborhood of infinity will be excluded from our
consideration. A solution: of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is nonoscillatory. Recently there has also
been a spate of papers on second-order nonlinear dynamic equations on time scales. For
a few examples of work since then, Agarwal et al. [1] considered the second-order delay
dynamic equations on time scales

w23 () + p(t)x(r(t) = 0, (1.2)

and established some sufficient conditions for oscillation of (1.2). Erbe et al. [9] consid-
ered the pair of second-order dynamic equations

(r(t)(® (1)) + p(t)2"(t) = 0, (1.3)
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(r()(@2(t)") + p(H)2" (o(t) = 0,

and established some necessary and sufficient conditions for nonoscillation of Hille—
Kneser type. Saker [14] examines oscillation for half-linear dynamic equations on time
scales (1.3), where > 1 is an odd positive integer and Agarwal et al. [3] studies
oscillation for the same equation (1.3), where> 1 is the quotient of odd positive
integers. Hassan [11] improved Agarwal’'s and Saker’s results for the equation (1.3),
when~ > 0 is the quotient of odd positive integers. Erbe et al. [7] considered the
half-linear delay dynamic equations on time scales

(r(t)(z(t)") + p(t)2" (7(8)) = 0,

wherey > 1 is the quotient of odd positive integers.

We herein utilize a Riccati transformation technique to establish oscillation criteria
for (1.1), where0 < v < 1 is the quotient of odd positive integers, which complete,
improve and generalize the results that have been established by Agarwal et al. [3],
Saker [14], Erbe et al. [7] and others. Also, interesting examples that illustrate the
importance of our results are included in Section 4.

2 Main Results

Throughout the paper we assume that
r2(t) >0, and / 7 (t)p(t) At = o0 (2.1)
to

is satisfied. Before stating our main results, we begin with the following lemma which
will play an important role in the proof of our main results.

Lemma 2.1. [7] Assume tha(2.1)and

<A
/ - t =0 (2.2)
to

(1)

hold and(1.1) has a positive solutiom on [ty, co)r. Then there exists @ € [to, co)r,
sufficiently large, so that

(i) z2(t) > 0, 222(t) < 0, z(t) > ta™(t), fort € [T, 00)r;

.. t) . . .

(i) ? is strictly decreasing ofil’, co).

Motivated by [7, Theorem 2.9], we can prove the following result which is a new
oscillation result for equation (1.1).
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Theorem 2.2. Assume thaf2.1) and (2.2) hold. Furthermore, assume that there exists
a positiveA-differentiable functiord(¢) such that

lim sup /t: {5(3);9(5) (T(S))7 OGO o, (23)

a(s) 67(s)(y + 1)+

whered, (t) := max{d(t),0} is the positive part of any functiod(¢). Then every
solution of equatiorl.1)is oscillatory onlt, oo)r.

t—o0

Proof. Assume (1.1) has a nonoscillatory solution [anoo)r. Then, without loss of
generality, there is & € [to, o)1 such thatz(t) satisfies the conclusions of Lemma
2.1 on(ty, 00)r with z(7(t)) > 0 on[t;,00)r. Letd(t) be a positiveA differentiable
function and consider the generalized Riccati substitution

w(t) = §(6)r(#) <“'f(g>)7

Then by Lemma 2.1, we see that the functio(¥) is positive on[t;,co0)r. By the
product rule and then the quotient rule (suppressing arguments)

B EED)A — rae)?

N 5"w bk

B i i MR (M v

- 5 Y (xo)Y Y (xo)Y
5A . 7 Y r(a:A)V(xUA

- vom () -

(t)

Using the fact thata% andr(t)(z>(t))” are decreasing (from Lemma 2.1) we get

= (f) z@ and (1) (=2(1)" > r° (8)(x (1))

o(t)

By these last two inequalities we obtain

58 T>7 B 7o (A7) (27)A

A < _ ag _
w= < 5gw 6p< (@) (2.4)

g

By the Rtzsche chain rule (see [5, Theorem 1.90]), and the factithat) > 0, we
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obtain

@O = 7 [ o0+ haat @) )

_ /O (1= B) 2(t) + ha” ()] dh 22 (8)

v

v [ @y anat
— O,

Using (2.4) and (2.5), we have that

vt < o () -0
Since )
P il ) MGl V) M
r(t)
we get that

Using the definition ofv we finally obtain

54 T\" )
wt < @ e oy () -

o7 o (67)
where) := LH DefineA > 0andB > 0 by
Y
A= 0w B e (),
(69)Ar> A(y0)>
Then, using the inequality
MBM — A< (A= 1)B?,
we get that
A
(6 J)-‘rwa — 0 . (wa)A _ )\ABA—l _ A)\
) (67) ™
< \A\=-1)B*
o @)

O (y + 1)+t

231

(2.5)

(2.6)
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By this last inequality and (2.6) we get
A y+1
wd < r((62)+) —5p<T>’Y.

— Oy
Integrating both sides from to ¢ we get

() < wlt) — wit) < / A e (D) ] s

O (y+ 1)+t
which leads to a contradiction, since the right-hand side tendsxtaoy (2.3). O

We introduce the notation

A R 1 [t st
Py 1= litm inf W/ P(s)As, @, :=liminf —/ P(s)As,
—0o0 T o

(t) t—oo t Jp 7(s)
Yo Yoo
Ty = liminft v (t), R:zlimsupw,
()" .t
whereP(t) = 0 p(t) and assume that= h{n mfm. Note that) <! < 1.1In
g —00 O
order for the definition op, to make sense we assume that
0 o'¢) Y
/ P(s)As = / p(s) (ﬁ) As < o0. (2.7)
to to U(s)

Theorem 2.3. Assume thaf2.1), (2.2)and (2.7) hold. Furthermore, assume that- 0
and

- 2.8
Dx > W; (2.8)

or
Dx T Qs > e (2.9)

Then every solution of equatigh.1)is oscillatory on[ty, co)r.

Proof. Assume (1.1) has a nonoscillatory solution [anoo)r. Then, without loss of
generality, there is @& € (t(, oo)r such thatz(¢) satisfies the conclusions of Lemma 2.1
on [T, oo) with z(7(¢)) > 0 on [T, co)r. Again we definev(t) as in Theorem 2.2 with
d(t) = 1. We get from (2.6) that

—wP(t) > P(t) + ﬂ(t)(wff(t))%“, for ¢ e [T, 00)r. (2.10)

First, we assume (2.8) holds. It follows from Lemma 2.1 that

o (58) <([25) " o cero
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which implies (using (2.2)) tha}xﬁlim w(t) = 0. Integrating (2.10) fronw (¢) to co and
usingtlim w(t) = 0, we have

> * (w(s) 7w (s)
7 P(s)A As. 2.11
w<t>z/0(t) (s) s+v/0(t) E (2.11)
It follows from (2.11) that
Ow(t) 0 O[T @) ()
oz L, e de o e

Lete > 0. Then by the definition o, andr, we can pickt; € [T, oo)r, sufficiently
large, so that

t /°0 w7 (t)
— P(s)As > p, —¢, and >r, — €, (2.13)
'@ Sy 0
fort € [t;, 00)r. From (2.12) and (2.13) and using the fact) > 0, we get that
Y0 )yO Y oo o % Yo O
tw(t) > (p*—(—:)+7t / s (w?(s)) lsw(s)AS
r(t) 7(t) o(t) sTHry (s)
1t [ r(s)
> * * 1+W A
> (-0 [ T
1+1 <y
> (pr—€)+(ri—e) 7 t7 /U(t) S’y+1AS. (2.14)

Using the Btzsche chain rule [5, Theorem 1.90], we get

— a 1
(_1) oI Rerere -l
< [ ()
_ 0 (2.15)

Then from (2.14) and (2.15), we have
tYw (t)

r(t) @w—@+0;—@Hi<JL)f

Taking thelim inf of both sides as — oo we get that

v

T > Dx — €+ (1 — 6)1+% .
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Sincee > 0 is arbitrary, we get

1+

P S — 1y T (2.16)

Using the inequality

41 ~7 B+l
Bu—Au= < (y + 1)1 A

with B =1 andA = [” we get that
r‘)/’y
« S T2 A\~ 1?
SRRV

which contradicts (2.8). Next, we assume (2.9) holds. Multiplying both sides of (2.10)
7+1
by t—, and integrating fronT'to ¢ (¢t > T') we get

r(t)
[ ireans= [ Sgrean [ (S57) &

Using integration by parts, we obtain

[ () s

By the quotient rule and applying thé&®sche chain rule,

(Swl)A (s7H1)A - $HrA(s)
r(s) ro(s)  r(s)ro(s)
(v + Do (s)

VAN

77(s)
< (+1ao’(s) (2.17)
- r(s) ’ ’
Hence
T (t) THw(T) [P SAs ! o7 (s)w(s) s
o < e [t [aen (TR A

AC P
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Let0 < e <[ be given. Then using the definition hfwe can assume, without loss of
generality, thafl” is sufficiently large so that

s
>l—€ s>T.

o(s)
It follows that )
o(s) < Ks, s>T where K := l )
— €
We then get that
7w (t) T w(T) bt
< _ z_
) ) s
t sTw(s) (3%0"(3)) &N
+ + 1)K —~ — As.
JRGER) e (5eY)
Let Y (s)
sTw (s
u(s) = )
Then \
aoy [ STw0(s)
! <S>‘< ) ) ’
where\ = LH It follows that
v
T w(t) T (T) /t s7Ht
< — P(s)As
W S T St

T / {0y + DEY(s) — yi(s)} As.

Again, using the inequality

A B+l
(v + 1)+t A

Bu — Aut <

whereA, B are constants, we get

ST TR PN
r(t - r(T 7 (s
' + /t | )’W [(vii)f(ﬂwm
7 (y+ 1) ol
w _ Lt s)As YO+ (¢ —
(T /T'r’(s)P( JAs + K (t—1T).
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It follows from this that

tYw(t) —TW:(I;J)(T) 1 [ttt T
< — —/ P(s)As 4+ K70 (1 - — ).
r(t) t t Jp r(s) 13
Sincew’ (t) < w(t) we get
T+ w(T) ;
N )\O 7+
tw (1) < r(T) _1/ § P(S)AS+K7(’Y+1) 1_2 _
r(t) t t Jp r(s) t

Taking thelim sup of both sides ag — oo we obtain

_ v+ - -
R< —q.+ K q*+(l_€)w+1).

Sincee > 0 is arbitrary, we get that

RS_(]*‘FW—_H)-

Using this and the inequality (2.16) we get

1+
_ ] v _ R
Pesmi—lne TS SRS -t ooy
Therefore |
P+t S oy
which contradicts (2.9). ]

Remark2.4. We give an example which shows that the inequality (2.8) and hence the
inequality (2.9) cannot be weakened. To see thi'let [1, 00), r(t) = 1, and

y+1 1

_ 7
p(t) = (v + 1)+l o+t t=>1

We have that

o o Y
. = liminft” ds=—1
po =ttt [ (00 =

and the second-order half-linear differential equation
(1)) + p()2"(t) = 0,

N
has a nonoscillatory solutian(t) = t7+1. This shows that the consta?{ﬁ is
v

sharp for the oscillation for all solutions of this equation. Note in the case when
: 1
this constant |§‘;.
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Theorem 2.5. Assume thaf2.1) and(2.2) hold and

7 7($)

lim sup —— /toop(s) (TYAS > 1. (2.18)

Then every solution ofl.1)is oscillatory on[ty, co)r.

Proof. Assumer is an eventually positive solution of (1.1) ¢, co)r. Using Lemma
2.1thereis a; € [ty, 00)r such that

z(t) >0, x(r(t)) >0, z2(t) >0, z°2(t) <0, —Z>z2(),

x(t)

on [ty, 00)r andT is strictly decreasing oft;, co)r. Then integrating both sides of
the dynamic equation (1.1) fromto 7', T > t > t;, we obtain

/t p(s)2™(7(s)As = r(t)(z2(1)) — r(T)(@>(T))".

Sincez®(t) > 0, we get that

%/ p(s)27 (r(5))As < (23(1))".

x(t) x(t)

SinceT is strictly decreasing and using' () < — we obtain
17 T(s)\" 27 (t)
— — < :
) ( . > rte= T

Sincex(t) is increasing we get

which gives us the contradiction

lim sup —— /toop(s) (E)WAS <1

tooo T(t)

which implies that

This concludes the proof. H
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In the following, we assume that

<At
- 00 2.19
/to rY (t) = ( )

holds and establish some sufficient conditions which ensure that every satatjoof
(1.1) oscillates or converges to zero. The proof is similar to the proof of [14, Theorem
3.3] and hence is omitted.

Theorem 2.6. Assume thaf2.1), (2.19)and

/: [% /t:p(s)As] % At = oo (2.20)

hold. If one of the condition@.3)or (2.18)holds, then every solution ¢1.1) oscillates
or converges to zero oy, o0) .

3 Applications

In this section, we apply the oscillation criteria to various time scales. For example if
b

b
T = R, theno(t) = t, u(t) = 0, FA(1) = F'(t), / FOAE = / F(#)dt, and (1.1)
becomes the sublinear half-linear delay differential equation ‘

(r(t) (='(1))")" + p(t)a" (7 (2)) = 0. 3.1)

Then we have from Theorems 2.2-2.6 the following oscillation criteria for equation
(3.1).

Theorem 3.1. Assume that

r'(t) >0, /OO 7 (t)p(t)dt = oo (3.2)

and ~ g
= 3.3
/to v (1) >~ (3:3)

hold. Furthermore, assume that there exists a positive differentiable fungtipsuch
that

. : 7(5)\ " _ r(s)((0)4 ()

lntriilolp /to [(5(5)1)(5) (T) R TBICENE ds = 0, (3.4)

whered, (t) := max{d(t),0} is the positive part of any functiod(t). Then every
solution of equatiorf3.1)is oscillatory on[ty, o).
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Theorem 3.2. Assume thag3.2), (3.3)and

/t:op(s) (@)st < oo

hold. Furthermore, assume

gl 35
D > W’ (3.5)
or
Dx + @ > 1, (3.6)
where ()"
[ [(1(s
. = liminf — — ,
and . (s)
o1 st (s
G = h{ggf;/T o) p(s)ds.
Then every solution of equatid8.1)is oscillatory on[t, ).
Theorem 3.3. Assume that3.2) and (3.3) hold. Furthermore, assume
_ [ 7(s)\”
1 — ——= ] ds>1. 3.7
1£risozlpr(t)/t p(S)( . ) s > (3.7)

Then every solution of3.1)is oscillatory on[ty, co).

Theorem 3.4. Assume that3.2) and

/ ©dt

I <X
to T;(t)
hold. Furthermore, assume that

/: {% /t:ﬂs)ds} "= o

hold. If one of the condition&.4) or (3.7) holds, then every solution ¢B.1) oscillates
or converges to zero ojy, co).

b—1
If T =Z,theno(t) =t + 1, u(t) = 1, f2(t) = Af(t), /bf(t)At = Zf(t), and
(1.1) becomes the sublinear half-linear delay difference Céquation -
A(r(t) (Az(t))") + p(t)z" ((t)) = 0. (3.8)

Then we have from Theorems 2.2-2.6 the following oscillation criteria for equation
(3.8).
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Theorem 3.5. Assume that
Ar(t) >0, Y r(t)p(t) = oo (3.9)
t=to

and

o0

- =00 (3.10)
=ty T (t)

hold. Furthermore, assume that there exists a positive sequéticeuch that

. 7(s) " 7(s)((Ad(s)) !
h?iigpz {5(5);}(3) (s n 1) T+ = 00, (3.11)

t=to

whered, (t) := max{d(t),0} is the positive part of any sequend&). Then every
solution of equatior3.8)is oscillatory onN.

Theorem 3.6. Assume thaf3.9), (3.10) and

f: (STEr—Si)Wp(S) <00

s=tg

hold. Furthermore, assume

gl 3.12
Px > W7 (3.12)
or
Di + qs > 1, (3.13)
where
= (T(s) Y
e =1 f— ,
b= R0 8;31 (s+ 1) pls)
and

1 <~ 57+ 7(s)\"
. = liminf - ,
R = r(s) (s + 1) Pls)

whereN is sufficiently large. Then every solution of equatfdr8)is oscillatory onN.
Theorem 3.7. Assume that3.9)and(3.10)hold. Furthermore, assume that

lim sup% ;p(s) (%s))ﬁy > 1 (3.14)

t—oo T

Then every solution of3.8)is oscillatory onN.
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Theorem 3.8. Assume that3.9) and

hold. Furthermore, assume

[e'e) 1 t—1 %

If one of the condition§3.11)or (3.14)holds, then every solution ¢B.8) oscillates or
converges to zero oN.

Similarly, we can state oscillation criteria for many other time scales,®.¢./7Z,
T={t:t=q¢ kecNyg>1},T=N; ::{nQ:nENO},OrT:{H :nGN}

where H,, is the so-called-th harmonic number defined by, = Z o

nGNO.

4 Examples

In this section we give some examples to illustrate our main results.

Example 4.1. Consider the half-linear delay dynamic equation

Y (AN LY it) ! gl — 4.1
(@) + 5 (41) o) o, @
fort € [ty,00)T, Wherea is a positive constant and < v < 1 is the quotient of odd
Y
positive integers and(t) < ¢. Herep(t) = % (%) andr(t) = t". Itis clear that
T

= = 01 © Al

/ P ()p(t) At = a/ ) np > a/ =,
t t t o U7
0 0 0

<At At
— = — =00, for 0<~vy<1,
to Tq(t) to t

by [6, Example 5.60]. (i.e., (2.1) and (2.2) hold). To apply Theorem 2.2, &ith= ¢,
it remains to prove that condition (2.3) holds. To see this note that

[ |09 (355) - #} -
- (a (v +11 7+1) hrfiigp/ A5 =

and
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. 1 :
if > W We conclude, by Theorem 2.2, that if
Y
- 1
RCERVEES

then every solution of (4.1) is oscillatory.

Example 4.2. Consider the half-linear delay dynamic equation

(@) + pH)2" (r(t) = 0, (4.2)

Y
wherep(t) = ﬂ% (# with 7(t) < t, r(t) = 1, wherej is a positive constant
T

and0 < v < 1is the quotient of odd positive integers. It is clear that conditions (2.1)
and (2.2) are satisfied since

| rwpmar=s [ (20) - farz A

/ — = / At = o0,
to T’;(t> to

by [6, Example 5.60]. For equation (4.2), we have
o] ol
P = liminftw/ p(s) (ﬁ) As

and

t—o00 () U(S)
> As
_ ey
B htrgégft /a(t) g

But, by the Btzsche chain rule

1\* 1 1 LS| ~
——) = —  __4n< —dh = ——
( ﬂ) ”/o (t+ hya(t))71 —”/0 s o

so we get that
Y
Dy > éliminf L = él”.
v tmee \o(?)

g > :
O+ (y 4 1)rH

then (2.7) and (2.8) hold and we have by Theorem 2.3 that (4.2) is oscillatGry-if
,y’y-i-l

lw(v+1)(7 + 1)7+1 )

So if
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Note that in the cas@ = R, 7(¢) = t andy = 1, we get that = 1 and we see

that3 > - which is the sharp condition for the Euler—Cauchy differential equation to

be oscillatory (see [1] for related results for the delay case). Also, note that the results
by Agarwal et al. [2] and Thandapani et al. [15] cannot be applied to equation (4.2) in
the cases of differential and difference equations.

Example 4.3. Consider the half-linear delay dynamic equation

1
(1)

(7 (@®(0)") ™ + = (7(1) = 0, (4.3)

for t € [ty, 00)r, Wwhere0 < ~ < 1 is the quotient of odd positive integers and) < ¢.
1 : - : e
Herep(t) = —— andr(t) = ¢". Itis clear that condition (2.1) is satisfied since

(1)
< At
/ — =00, for 0<~<1,
t

1=y
o 1

by [6, Example 5.60]. As in Example 4.1, it is clear that condition (2.2) holds. To apply
Theorem 2.5, it remains to prove that condition (2.18) holds. To see this note that

lim sup —/ p(s) (ﬂ) As = lim sup/ 2
t s t 5

t—o00 T<t) t—o00
Then, by Theorem 2.5 every solution of (4.3) is oscillatory.

Example 4.4. Consider the half-linear delay dynamic equation

Y
7 @20))* + (D) o) =0 @4)
7(s)
for ¢t € [ty, )., Where0 < v < 1 is the quotient of odd positive integers. In this case
il
p(t) = (ig andr(t) = 7", Itis clear that (2.1) holds. Also
T
< At
/ SEESY <o, 0<~vy<L1,
to t

. 1
for those time scaleg, co)r, Where/ t—pAt < oo whenp > 1, and hence (2.19)

to
oo

. . 1
holds for such time scales. The COI’IdItI% t—pAt < oo whenp > 1 holds for many

tg
time scales (see [6, Theorems 5.64 and 5.65], and see [6, Example 5.63] where this
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result does not hold). To see that (2.20) holds note that

[

/t: p(s)As} At

v

/oo
to

/OO —
tO L
/OO ~

10 L

1 [T o(s)\”
ﬂ“/ (T(s>) A
L to
O E
to
1
t—to|7
prer At.

L. Erbe, T. Hassan, A. Peterson, and S. Saker

~

At

We can find) < k£ < 1 such that — t, > kt, fort > t, > to. Therefore, we get

[ e

t .ly 1 o] 1
/ p(s)As} At > lw/ {
to tr

1

t
/As
tg

L e
At:kv/
tg

1
—At = 0.
t

To apply Theorem 2.6, it remains to prove that the condition (2.3) holds. To see this
note that ifo(¢) = 1, then

t—o00

) (92,

y+1

Jimsup / stomts) (23) - o

a(s)

SO+ D s

As:/ At = 0.

. , . <1
We conclude that ifty, co)r is a time scale Wher?[ t—pAt < oo whenp > 1, then,

to

by Theorem 2.6, every solution of (4.4) is oscillatory or converges to zero.
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