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1. Introduction and Preliminaries

Consider the rational difference equation

xn+1 = α + βxnxn−1 + γ xn−1

A + Bxnxn−1 + Cxn−1
, n = 0, 1, . . . (1.1)

with nonnegative parameters and with arbitrary nonnegative initial conditions such that
the denominator is always positive. Our goal here and in Part 2 of this paper is to
investigate the global stability character, the periodic nature, and the boundedness of
solutions of Eq. (1.1). We also pose several open problems and conjectures which we
are unable to resolve at this time.

Eq. (1.1), which contains some interesting and some challenging special cases of
second-order rational difference equations, also arises from the rational system in the
plane:

xn+1 = α1 + γ1yn

yn

yn+1 = α2 + β2xn + γ2yn

A2 + B2xn + C2yn


 , n = 0, 1, . . . (1.2)

when we reduce it to a single equation. See [3].
If we allow one or more of the parameters in Eq. (1.1) to be zero, then Eq. (1.1)

contains
(23 − 1) × (23 − 1) = 49

special cases of equations with positive parameters. One can see that 19 of these special
cases are trivial, linear, Riccati, or reducible to linear or Riccati equations. The remaining
30 special cases are investigated here and in Part 2 of the paper and they are listed, in
normalized form, inAppendixA. The results which we obtained for the 30 cases, together
with some challenging open problems and conjectures, appear in Parts 1 and 2 of the
paper. Part 1 investigates Equations #1 through #12 and Part 2 investigates Equations
#13 through #30. A brief summary of our results and some conjectures are given in
Appendix A.

The following well-known result, which is needed for the local asymptotic stability
of the equilibrium points of Eq. (1.1), gives necessary and sufficient conditions for the
two roots of a quadratic equation to have modulus less than one. See [12].

Theorem 1.1. Assume that p and q are real numbers. Then a necessary and sufficient
condition for both roots of the equation

λ2 + pλ + q = 0

to lie inside the unit disk is
|p| < 1 + q < 2.

We also list four global attractivity results which are needed in our investigation. These
results have straight forward extensions to difference equations of any order but we only
need them here for second-order difference equations.
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In the next two theorems we make use of the following notation associated with a
function f (z1, z2) which is monotonic in both arguments.

For each pair of numbers (m, M) and for each i ∈ {1, 2}, define

Mi(m, M) =
{

M, if f is increasing in zi

m, if f is decreasing in zi

and
mi(m, M) = Mi(M, m).

Theorem 1.2. (Kulenovic-Ladas-Sizer [13] or [14]) Let [a, b] be a closed and bounded
interval of real numbers and let f ∈ C([a, b]2, [a, b]) satisfy the following conditions:

1. f (z1, z2) is monotonic in each of its arguments.

2. If (m, M) is a solution of the system

M = f (M1(m, M), M2(m, M))

m = f (m1(m, M), m2(m, M))

}
, (1.3)

then M = m.

Then the difference equation

xn+1 = f (xn, xn−1), n = 0, 1, . . . (1.4)

has a unique equilibrium point x̄ in [a, b] and every solution of Eq. (1.4), with initial
conditions in [a, b], converges to x̄.

Theorem 1.3. (Camouzis-Ladas [5] or [6]) Assume that f ∈ C([0, ∞)2, [0, ∞)) and
f (z1, z2) is either strictly increasing in z1 and z2, or strictly decreasing in z1 and z2, or
strictly increasing in z1 and strictly decreasing in z2. Furthermore, assume that for every

m ∈ (0, ∞) and M > m,

either

[f (M1(m, M), M2(m, M)) − M][f (m1(m, M), m2(m, M)) − m] > 0

or

f (M1(m, M), M2(m, M)) = M and f (m1(m, M), m2(m, M)) = m.

Then every solution of Eq. (1.4) which is bounded from above and from below by positive
constants converges to a finite limit.

Theorem 1.4. (El-Metwally, Grove, Ladas, and Voulov [9] or [10]) Let I be an
interval of real numbers and let f ∈ C(Ik+1, I ). Assume that the following three
conditions are satisfied:
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1. f is increasing in each of its arguments.

2. f (z1, . . . , zk+1) is strictly increasing in each of the arguments zi1, . . . , zil where
1 ≤ i1 < i2 < . . . < il ≤ k + 1, and the arguments i1, i2, . . . , il are relatively
prime.

3. Every point c in I is an equilibrium point of the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, . . . . (1.5)

Then every solution of Eq. (1.5) has a finite limit.

The following powerful result holds when the function f (z1, z2) in Eq. (1.4) is
decreasing in z1 and increasing in z2. Note that this case of monotonicity is not included
in the hypotheses of Theorem 1.3.

Theorem 1.5. (Camouzis-Ladas [4] or [6]) Let I be a set of real numbers and let

f : I × I → I

be a function f (z1, z2) which decreases in z1 and increases in z2. Then for every solution
{xn}∞n=−1 of Eq. (1.4) the subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 of even and odd terms
of the solution do exactly one of the following:

(i) They are both monotonically increasing.

(ii) They are both monotonically decreasing.

(iii) Eventually, one of them is monotonically increasing and the other is monotonically
decreasing.

In the remaining part of this section we present three results which were motivated by
our investigation of the character of solutions of the following special cases of Eq. (1.1):

#3, #4, #6, #10, #17, #19, #21.

See the corresponding sections in Parts 1 and 2 of the paper. See also [18, 19] and the
references cited there in.

Theorem 1.6. Let I be a set of real numbers and let

f : I × I → I

be a function f (z1, z2) which increases in both variables. Then for every solution
{xn}∞n=−1 of the difference equation

xn+1 = f (xn, xn−1), n = 0, 1, . . . , (1.6)

the subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 of even and odd terms of the solution do
exactly one of the following:
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(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is monotonically decreasing.

Proof. Assume that (iii) is not true for a solution {xn}∞n=−1 of Eq. (1.6). Then for some
N ≥ 0, either

x2N+1 ≥ x2N−1 and x2N+2 ≥ x2N (1.7)

or
x2N+1 ≤ x2N−1 and x2N+2 ≤ x2N. (1.8)

Assume that (1.7) holds. The case where (1.8) holds is similar and will be omitted. Then

x2N+3 = f (x2N+2, x2N+1) ≥ f (x2N, x2N−1) = x2N+1

and
x2N+4 = f (x2N+3, x2N+2) ≥ f (x2N+1, x2N) = x2N+2

and the proof is complete. �

Theorem 1.7. Assume that the function f ∈ C([a, ∞)2, [a, ∞)) increases in both
variables and that the difference equation

xn+1 = f (xn, xn−1), n = 0, 1, . . . (1.9)

has no equilibrium point in (a, ∞). Let {xn}∞n=−1 be a solution of Eq. (1.9) with x−1, x0 ∈
(a, ∞). Then

lim
n→∞ xn =




∞ if f (x, x) > x, for all x > a.

a if f (x, x) < x, for all x > a.

Proof.
Case 1:

f (x, x) > x, for all x > a.

Choose a number z0 such that

a < z0 ≤ min{x−1, x0}

and let {zn}∞n=0 be the unique solution of the first-order difference equation

zn+1 = f (zn, zn), n = 0, 1, . . . (1.10)
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with initial condition z0. The key idea behind the proof in this case is that every nontrivial
solution of Eq. (1.10) converges to infinity and that {xn}∞n=−1 is bounded from below by
{zn}. Indeed,

x1 = f (x0, x−1) ≥ f (z0, z0) = z1 > z0

x2 = f (x1, x0) ≥ f (z0, z0) = z1 > z0

x3 = f (x2, x1) ≥ f (z1, z1) = z2 > z1 > z0,

� � �
from which the result follows because

lim
n→∞ zn = ∞.

Case 2:
f (x, x) < x, for all x > a.

Choose a number z0 such that

z0 ≥ max{x−1, x0}
and define {zn}∞n=0 as in Case 1. The key idea behind the proof now is that every
nontrivial solution of Eq. (1.10) converges to a and {xn}∞n=−1 is bounded from above by
{zn}. Indeed,

x1 = f (x0, x−1) ≤ f (z0, z0) = z1 < z0

x2 = f (x1, x0) ≤ f (z0, z0) = z1 < z0

x3 = f (x2, x1) ≤ f (z1, z1) = z2 < z1 < z0,

� � �
from which it follows that

lim
n→∞xn ≤ lim

n→∞ zn = a.

The proof is complete. �

Theorem 1.8. Assume that f ∈ C([0, ∞)2, [0, ∞)) increases in both variables and that
the difference equation

xn+1 = f (xn, xn−1), n = 0, 1, . . . (1.11)

has two consecutive equilibrium points x̄1 and x̄2, with x̄1 < x̄2. Also assume that either

f (x, x) > x, for x̄1 < x < x̄2 (1.12)

or
f (x, x) < x, for x̄1 < x < x̄2. (1.13)
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Then every solution {xn}∞n=−1 of Eq. (1.11) with initial conditions

x−1, x0 ∈ (x̄1, x̄2)

converges to one of the two equilibrium points, and more precisely the following is true:

lim
n→∞ xn =




x̄1 , if (1.13) holds,

x̄2 , if (1.12) holds.

Proof. The proof is similar to the proof of Theorem 1.7 and will be omitted. �

Remark 1.9. Some special cases of System (1.2) involve competitive systems in the
plane. For such systems there is a vast literature dealing with various features of the
solutions. See for example [7, 11, 15–19] and the references cited there in. In this
paper our methods and techniques are those that we have developed in our treatment
of rational difference equations to understand the global character of solutions. See
[1–6, 8–10, 12–14], together with the global stability results that we presented in this
section to understand the dynamics of Eq. (1.1).

2. Equation #1:

xn+1 = α

1 + xnxn−1
, n = 0, 1, . . . . (2.1)

For this equation we conjecture that every solution has a finite limit but we can only
confirm it when

α ≤ 2.

Eq. (2.1) has a unique equilibrium x̄, and x̄ is the unique positive root of the cubic
equation:

x̄3 + x̄ − α = 0.

The characteristic equation of the linearized equation of Eq. (2.1) about x̄ is

λ2 + α − x̄

α
λ + α − x̄

α
= 0.

From this it follows by Theorem 1.1 that x̄ is locally asymptotically stable for all values
of the parameter α.

Clearly every solution of Eq. (2.1) is bounded and more precisely,

α

1 + α2
≤ xn+1 = α

1 + xnxn−1
≤ α, for all n ≥ 1.

The following result is now a consequence of Theorem 1.2 and the fact that if (m, M) is
a solution of system (1.3), namely,

M = α

1 + m2
and m = α

1 + M2
,
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then
m = M

when
α ≤ 2.

Theorem 2.1. Assume that
0 < α ≤ 2.

Then the positive equilibrium of Eq. (2.1) is globally asymptotically stable.

Conjecture 2.2. Show that every positive solution of Eq. (2.1) has a finite limit.

See also Section 7 in Part 2.

3. Equation #2:

xn+1 = α

(1 + xn)xn−1
, n = 0, 1, . . . . (3.1)

This equation has some similarities with Lyness’s Equation,

xn+1 = α + xn

xn−1
, n = 0, 1, . . . (3.2)

which is gifted with the invariant:

(α + xn−1 + xn)

(
1 + 1

xn−1

)(
1 + 1

xn

)
= constant, ∀ n ≥ 0.

See [12]. Indeed, as for Eq. (3.2), Eq. (3.1) possesses an invariant, namely,

xn−1 + xn + xn−1xn + α

(
1

xn−1
+ 1

xn

)
= constant, ∀ n ≥ 0. (3.3)

By using (3.3) it follows that every positive solution of Eq. (3.1) is bounded from above
and from below by positive constants.

Eq. (3.1) has a unique positive equilibrium x̄, and x̄ is the unique positive root of the
cubic equation

x̄3 + x̄2 − α = 0.

The characteristic equation of the linearized equation of Eq. (3.1) about the equilibrium
x̄ is

λ2 + x̄

1 + x̄
λ + 1 = 0

which has two complex conjugate roots on |λ| = 1.

Conjecture 3.1. The (unique) positive equilibrium of Eq. (3.1) is stable (but not asymp-
totically stable).
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Conjecture 3.2. No positive, non-equilibrium solution of Eq. (3.1) has a limit.

Open Problem 3.3.

(a) Determine all periodic solutions of Eq. (3.1).

(b) Is there a value of α for which every solution of Eq. (3.1) is periodic with the same
period?

Open Problem 3.4. Assume that α is a real number. Determine the set G of real initial
values x−1, x0 for which the equation

xn+1 = α

(1 + xn)xn−1

is well defined for all n ≥ 0, and investigate the character of solutions of Eq. (3.1) with
x−1, x0 ∈ G.

Open Problem 3.5.

(a) Assume that {αn} is a periodic sequence of positive real numbers. Are the positive
solutions of the equation

xn+1 = αn

(1 + xn)xn−1
, n = 0, 1, . . . (3.4)

bounded?

(b) Determine the periods of all periodic sequences {αn} of positive real numbers for
which Eq. (3.4) has an invariant.
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4. Equation #3:

xn+1 = βxnxn−1

1 + xnxn−1
, n = 0, 1, . . . . (4.1)

The main result for this equation is the following:

Theorem 4.1. Every solution of Eq. (4.1) has a finite limit.

A solution of Eq. (4.1) with
x−1x0 = 0

is identically zero, for n ≥ 0, and so in the sequel we will only consider positive solutions
of Eq. (4.1).

Clearly
xn+1 < β, for all n ≥ 0,

and so every solution of Eq. (4.1) is bounded.
It will also be useful to note that Eq. (4.1) has no prime period-two solutions.
Here

f (x, y) = βxy

1 + xy

is increasing in both variables and so by Theorem 1.6 the subsequences {x2n} and {x2n+1}
of every solution of Eq. (4.1) should both converge to one and the same equilibrium point
of Eq. (4.1).

In the remaining part of this section, we provide some additional details about the
character of solutions of Eq. (4.1).

Zero is always an equilibrium point of Eq. (4.1) and it is locally asymptotically stable
for all values of the parameter β.

Note that when
β < 2, (4.2)

x̄ = 0 is the only equilibrium point of Eq. (4.1) and

f (x, x) = βx2

1 + x2
< x, for all x > 0.

Hence by Theorem 1.7, with a = 0,

lim
n→∞ xn = 0.

Therefore, when (4.2) holds, the zero equilibrium of Eq. (4.1) is globally asymptotically
stable.

When
β = 2,

Eq. (4.1), in addition to the zero equilibrium, has the unique positive equilibrium

x̄ = 1.
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This is a non-hyperbolic equilibrium point with characteristic roots (for the associated
characteristic equation of the linearized equation about x̄):

λ1 = 1 and λ2 = −1

2
.

By Theorems 1.6–1.8, the following statements are true for every non-equilibrium solu-
tion {xn}∞n=−1 of Eq. (4.1):

(i) If for some N ≥ 0, xN−1, xN ∈ [0, 1], then

xn ∈ [0, 1], for all n ≥ N,

and
lim

n→∞ xn = 0.

(ii) If for some N ≥ 0, xN−1, xN ∈ [1, ∞), then

xn ∈ [1, ∞), for all n ≥ N,

and
lim

n→∞ xn = 1.

(iii) If the subsequences {x2n} and {x2n+1} lie, one in the interval [0, 1] and the other
in [1, ∞), then they must both converge monotonically to 1.

When
β > 2, (4.3)
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Eq. (4.1), in addition to the zero equilibrium, has the two positive equilibrium points:

x̄1 = β − √
β2 − 4

2
and x̄2 = β + √

β2 − 4

2
. (4.4)

The characteristic equation of the linearized equation about a positive equilibrium {x̄i}i=1,2
of Eq. (4.1) is

λ2 − 1

βx̄i

λ − 1

βx̄i

= 0

and so by Theorem 1.1, x̄1 is unstable (saddle point) and x̄2 is locally asymptotically
stable.

When (4.3) holds, the following is true for Eq. (4.1):

f (x, x) < x, for x ∈ (0, x̄1) ∪ (x̄2, ∞)

and
f (x, x) > x, for x ∈ (x̄1, x̄2).

Therefore by Theorems 1.6–1.8, the following statements are true for every non-
equilibrium solution {xn}∞n=−1 of Eq. (4.1):

(i) If for some N ≥ 0, xN−1, xN ∈ [0, x̄1], then

xn ∈ [0, x̄1], for all n ≥ N,

and
lim

n→∞ xn = 0.

(ii) If for some N ≥ 0, xN−1, xN ∈ [x̄1, x̄2], then

xn ∈ [x̄1, x̄2], for all n ≥ N,

and
lim

n→∞ xn = x̄2.
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(iii) If for some N ≥ 0, xN−1, xN ∈ [x̄2, ∞), then

xn ∈ [x̄2, ∞), for all n ≥ N,

and
lim

n→∞ xn = x̄2.

(iv) If the subsequences {x2n} and {x2n+1} lie eventually, one in [0, x̄1] and the other in
[x̄1, x̄2], then they both converge monotonically to x̄1, and if they lie eventually, one
of them in [x̄1, x̄2] and the other in [x̄2, ∞), then they both converge monotonically
to x̄2.

It should be mentioned that Eq. (4.1) cannot have a solution with the property that the
subsequences of even {x2n} and odd {x2n+1} terms lie eventually, one of them in [0, x̄1]
and the other in [x̄2, ∞). This is because, by Theorem 1.6 the two subsequences are
eventually monotonic and also because every solution of Eq. (4.1) is bounded and Eq.
(4.1) has no period-two solutions.

An interesting feature of Eq. (4.1), and also for Eqs. (5.1) and (19.1) (see Part 2), is
that the local stability of the zero equilibrium does not imply its global stability.

5. Equation #4:

xn+1 = βxnxn−1

1 + xn−1
, n = 0, 1, . . . . (5.1)

Here

f (x, y) = βxy

1 + y

is increasing in both variables and we can employ Theorems 1.6–1.8 to investigate the
character of solutions of the equation.

Zero is always an equilibrium point of Eq. (5.1) and when

β > 1, (5.2)

Eq. (5.1) also has the unique positive equilibrium

x̄ = 1

β − 1
.

The characteristic equation of the linearized equation of Eq. (5.1) about the zero equi-
librium is

λ2 = 0

and so x̄ = 0 is locally asymptotically stable for all values of the parameter β.
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When (5.2) holds, the characteristic equation of the linearized equation of Eq. (5.1)

about the positive equilibrium x̄ = 1

β − 1
is

λ2 − λ + 1

β
− 1 = 0.

From this it follows by Theorem 1.1 that x̄ is unstable (saddle point).
It is important to note that the following identities for a solution {xn}∞n=−1 of Eq. (5.1)

x2n+1 = β

(
x2n−1

1 + x2n−1

)
x2n, for all n ≥ 0,

x2n+2 = β

(
x2n

1 + x2n

)
x2n+1, for all n ≥ 0,

imply that if one of the subsequences {x2n} or {x2n+1} has a finite limit, then so does the
other.

For the long-term behavior of solutions of Eq. (5.1) we have the following result:

Theorem 5.1.

(a) Assume that
β ≤ 1.

Then every solution of Eq. (5.1) converges to zero.

(b) Assume that
β > 1.

Then the following statements are true for every non-equilibrium solution {xn}∞n=−1
of Eq. (5.1):
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(i) If for some N ≥ 0, xN−1, xN ∈
[

0,
1

β − 1

]
, then

xn ∈
[

0,
1

β − 1

]
, for all n ≥ N,

and
lim

n→∞ xn = 0.

(ii) If for some N ≥ 0, xN−1, xN ∈
[

1

β − 1
, ∞

)
, then

xn ∈
[

1

β − 1
, ∞

)
, for all n ≥ N,

and
lim

n→∞ xn = ∞.

(iii) If either

x2n <
1

β − 1
< x2n+1, for all n ≥ 0,

or

x2n >
1

β − 1
> x2n+1, for all n ≥ 0,

then the solution is bounded and

lim
n→∞ xn = 1

β − 1
.

Proof. The proof follows by the preceding discussion and by employing Theorems 1.6–
1.8. �

6. Equation #5:

xn+1 = γ xn−1

1 + xnxn−1
, n = 0, 1, . . . . (6.1)

When one of the initial conditions of a solution of Eq. (6.1) is zero, Eq. (6.1) reduces to
the linear equation

xn+1 = γ xn−1

with one initial condition equal to zero. If the other initial condition of a solution is φ,
then the solution of the equation is

. . . , 0, φ, 0, γ φ, 0, γ 2φ, . . . .
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Hence the solution converges to zero when

γ < 1.

When
γ = 1,

the solution is the period-two sequence

. . . , 0, φ, 0, φ, 0, φ, . . .

and when
γ > 1 and φ > 0,

the solution is unbounded.
The key results for positive solutions of Eq. (6.1) are contained in the following

lemma:

Lemma 6.1.

(a) Every positive solution of Eq. (6.1) is bounded.

(b) Eq. (6.1) has positive prime period-two solutions if and only if

γ > 1.

Proof. (a) When
γ ≤ 1,

we have
xn+1 = γ xn−1

1 + xnxn−1
≤ xn−1

and so the solutions of Eq. (6.1) are bounded. Now assume that

γ > 1

and let {xn}∞n=−1 be a positive solution of Eq. (6.1). Choose a positive number m such
that

x−1, x0 ∈
(

m,
γ − 1

m

)
.

Then by using the monotonic character of the function:

f (x, y) = γy

1 + xy

we find that

m = γm

1 + γ−1
m

m
< x1 = γ x−1

1 + x0x−1
<

γ
γ−1
m

1 + m
γ−1
m

= γ − 1

m



On the Dynamics of a Rational Difference Equation, Part 1 17

and so by induction

xn ∈
(

m,
γ − 1

m

)
, for all n ≥ −1.

(b) The proof is straightforward and will be omitted. �

One can easily see that when
γ > 1, (6.2)

all positive prime period-two solutions of Eq. (6.1) are given by

. . . , φ, ψ, . . .

with
φψ = γ − 1 and φ �= ψ.

Also note that when (6.2) holds, the characteristic roots of the linearized equation of
Eq. (6.1) about the positive equilibrium x̄ = √

γ − 1 are

λ1 = −1 and λ2 = 1

γ
∈ (0, 1).

Finally note that when (6.2) holds, then for every positive solution {xn}∞n=−1 of Eq. (6.1)

xn+1xn = γ xnxn−1

1 + xnxn−1
, n ≥ 0,

which implies that
lim

n→∞(xnxn−1) = γ − 1 > 0.

The main results for Eq. (6.1) are summarized in the following theorem.

Theorem 6.2.

(a) Assume that
γ < 1.

Then the zero equilibrium of Eq. (6.1) is globally asymptotically stable.

(b) Assume that
γ = 1.

Then every solution of Eq. (6.1) converges to a (not necessarily prime) period-two
solution of the form

. . . , 0, φ, . . .

with
φ ≥ 0.
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(c) Assume that
γ > 1.

Then every positive solution of Eq. (6.1) converges to a (not necessarily prime)
period-two solution of the form

. . . , φ, ψ, . . .

with
φψ = γ − 1.

On the other hand when

γ > 1 and x−1x0 = 0 with x−1 + x0 > 0,

the solutions of Eq. (6.1) are unbounded.

Corollary 6.3. Eq. (6.1) has a period-two trichotomy which can be described as follows:

(i) Every solution of Eq. (6.1) converges to zero when

γ < 1.

(ii) Every solution of Eq. (6.1) converges to a (not necessarily prime) period-two
solution when

γ = 1.

(iii) Eq. (6.1) has unbounded solutions when

γ > 1.

7. Equation #6:

xn+1 = α + xnxn−1, n = 0, 1, . . . . (7.1)

Here
f (x, y) = α + xy

is increasing in both variables and we can employ Theorems 1.6–1.8 to investigate the
character of solutions of the equation.

Eq. (7.1) has no equilibrium points when

α >
1

4
.

When

α = 1

4
,
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Eq. (7.1) has the unique equilibrium point x̄ = 1

2
which is unstable (saddle point).

Finally when

α <
1

4
,

Eq. (7.1) has the two positive equilibrium points:

x̄1 = 1 − √
1 − 4α

2
and x̄2 = 1 + √

1 − 4α

2

of which x̄1 is locally asymptotically stable and x̄2 is unstable (saddle point).
It is important to note that the following identities for a solution of Eq. (7.1)

x2n+1 = α + x2nx2n−1, for all n ≥ 0,

x2n+2 = α + x2n+1x2n, for all n ≥ 0,

imply that if one of the subsequences {x2n} or {x2n+1} has a finite limit, then so does the
other. Please note that Eq. (7.1) has no prime period-two solutions.
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For the long-term behavior of solutions of Eq. (7.1) we have the following result:

Theorem 7.1.

(a) Assume that

α >
1

4
.

Then every solution of Eq. (7.1) converges to ∞.

(b) Assume that

α = 1

4
.

Then the following statements are true for every non-equilibrium solution {xn}∞n=−1
of Eq. (7.1):

(i) If for some N ≥ 0, xN−1, xN ∈
[

0,
1

2

]
, then

xn ∈
[

0,
1

2

]
, for all n ≥ N,

and

lim
n→∞ xn = 1

2
.

(ii) If for some N ≥ 0, xN−1, xN ∈
[

1

2
, ∞

)
, then

xn ∈
[

1

2
, ∞

)
, for all n ≥ N,

and
lim

n→∞ xn = ∞.

(iii) If either

x2n <
1

2
< x2n+1, for all n ≥ 0,

or

x2n+1 <
1

2
< x2n, for all n ≥ 0,

then the solution is bounded and

lim
n→∞ xn = 1

2
.
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(c) Assume that

α <
1

4
.

Then the following statements are true for every non-equilibrium solution {xn}∞n=−1
of Eq. (7.1):

(i) If for some N ≥ 0, xN−1, xN ∈ [0, x̄2], then

xn ∈ [0, x̄2], for all n ≥ N,

and
lim

n→∞ xn = x̄1.

(ii) If for some N ≥ 0, xN−1, xN ∈ [x̄2, ∞), then

xn ≥ x̄2, for all n ≥ N,

and
lim

n→∞ xn = ∞.

(iii) If either
x̄1 < x2n < x̄2 < x2n+1, for all n ≥ 0,

or
x̄1 < x2n+1 < x̄2 < x2n, for all n ≥ 0,

then the solution is bounded and

lim
n→∞ xn = x̄2.

Proof. The proof follows by the preceding discussion and by employing Theorems 1.6–
1.8. �

8. Equation #7:

xn+1 = β + 1

xnxn−1
, n = 0, 1, . . . . (8.1)

The change of variables:

xn = 1

yn

√
β

transforms Eq. (8.1) to the difference equation (2.1). See Section 1.

Conjecture 8.1. Every positive solution of Eq. (8.1) has a finite limit.
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Open Problem 8.2. Assume that β is a real number. Determine the set G of real initial
values x−1, x0 for which the equation

xn+1 = β + 1

xnxn−1

is well defined for all n ≥ 0, and investigate the character of solutions of Eq. (8.1) with
x−1, x0 ∈ G.

9. Equation #8:

xn+1 = βxn + 1

xn−1
, n = 0, 1, . . . . (9.1)

The main result for this equation is the following:

Theorem 9.1.

(a) Eq. (9.1) has bounded solutions, if and only if

β < 1. (9.2)

(b) When (9.2) holds, the equilibrium of Eq. (9.1) is globally asymptotically stable.

Proof. (a) Note that
xn+1 > βxn

from which it follows that Eq. (9.1) has unbounded solutions for

β ≥ 1.

On the other hand when (9.2) holds, we claim that every positive solution of Eq. (9.1) is
bounded. Indeed if {xn}∞n=−1 is a positive solution of Eq. (9.1) and if we choose positive
numbers m and M such that

x−1, x0 ∈ [m, M] and mM = 1

1 − β
,

then

m = 1

(1 − β)M
= βm + 1

M
≤ x1 = βx0 + 1

x−1
≤ βM + 1

m
= 1

(1 − β)m
= M

and inductively,
xn ∈ [m, M], for all n ≥ −1

which establishes our claim.
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(b) When (9.2) holds, Eq. (9.1) has the unique equilibrium

x̄ = 1√
1 − β

.

The characteristic equation of the linearized equation of Eq. (9.1) about x̄ is

λ2 − βλ + (1 − β) = 0.

From this it follows by Theorem 1.1 that x̄ is locally asymptotically stable.
To complete the proof it remains to show that when (9.2) holds, every solution of

Eq. (9.1) converges to the equilibrium x̄. This follows now by applying Theorem 1.3.
Indeed for every m ∈ (0, ∞) and M > m,(

βM + 1

m
− M

)(
βm + 1

M
− m

)
=

(
(β − 1)mM + 1

m

)(
(β − 1)mM + 1

M

)

and the hypotheses of Theorem 1.3 are satisfied. The proof is complete. �

10. Equation #9:

xn+1 = α + xn−1

xnxn−1
, n = 0, 1, . . . . (10.1)

The main result for this equation is the following:

Theorem 10.1. The equilibrium of Eq. (10.1) is globally asymptotically stable.

Proof. Observe that

xn+1 = xn−2(α + xn−1)

α + xn−2
, n = 1, 2, . . . (10.2)

and that the function

f (x, y) = y(α + x)

α + y

is strictly increasing in both arguments and every point x̄ ≥ 0 is an equilibrium point of
Eq. (10.2). By Theorem 1.4 it follows that every solution of Eq. (10.2) converges to a
finite limit.

Also note that Eq. (10.1) has a unique positive equilibrium x̄, and x̄ is the unique
solution of the cubic equation

x̄3 − x̄ − α = 0.

The characteristic equation of the linearized equation of Eq. (10.1) about the equilibrium
x̄ is

λ2 + λ + α

x̄3
= 0.

Hence by Theorem 1.1 the equilibrium x̄ is locally asymptotically stable for all values
of the parameter α. The proof is complete. �
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11. Equation #10:

xn+1 = γ xn−1 + xnxn−1, n = 0, 1, . . . . (11.1)

Here
f (x, y) = γy + xy

is increasing in both variables and we can employ Theorems 1.6–1.8 to investigate the
character of solutions of Eq. (11.1).

Zero is always an equilibrium solution of Eq. (11.1) and when

γ < 1,

Eq. (11.1) also has the unique positive equilibrium x̄ = 1 − γ .
The characteristic equation of the linearized equation of Eq. (11.1) about the zero

equilibrium is
λ2 − γ = 0.

From this it follows by Theorem 1.1 that x̄ = 0 is locally asymptotically stable when
γ < 1.

The characteristic equation of the linearized equation of Eq. (11.1) about the positive
equilibrium when γ < 1 is

λ2 + (γ − 1)λ − 1 = 0.

From this it follows by Theorem 1.1 that x̄ is unstable (saddle point).
It is important to note that, when γ < 1, the following identities for a solution

{xn}∞n=−1 of Eq. (11.1)

x2n+1 = (γ + x2n)x2n−1, for all n ≥ 0,

x2n+2 = (γ + x2n+1)x2n, for all n ≥ 0,
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imply that one of the subsequences {x2n} or {x2n+1} has a finite limit if and only if the
other has too. Indeed this is clear if the limit of one of the subsequences is positive. On
the other hand when one of the subsequences converges to zero, say

{x2n} → 0,

then eventually
x2n+1 = (γ + x2n)x2n−1 < x2n−1

and so {x2n+1} also converges to a finite limit.
For the long-term behavior of solutions of Eq. (11.1) we have the following result:

Theorem 11.1.

(a) Assume that
γ ≥ 1.

Then every solution of Eq. (11.1) converges to ∞.

(b) Assume that
γ < 1.

Then the following statements are true for every non-equilibrium solution {xn}∞n=−1
of Eq. (11.1):

(i) If for some N ≥ 0, xN−1, xN ∈ [0, 1 − γ ], then

xn ∈ [0, 1 − γ ], for all n ≥ N,

and
lim

n→∞ xn = 0.

(ii) If for some N ≥ 0, xN−1, xN ∈ [1 − γ, ∞), then

xn ∈ [1 − γ, ∞), for all n ≥ N,

and
lim

n→∞ xn = ∞.

(iii) If either
x2n < 1 − γ < x2n+1, for all n ≥ 0,

or
x2n+1 < 1 − γ < x2n, for all n ≥ 0,

then the solution is bounded and

lim
n→∞ xn = 1 − γ.

Proof. The proof follows by the preceding discussion and by employing Theorems 1.6–
1.8. �
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12. Equation #11:

xn+1 = α + xnxn−1

A + xnxn−1
, n = 0, 1, . . . . (12.1)

For this equation we conjecture that every solution has a finite limit but we can only
confirm it when

A ≥ α. (12.2)

Note that the function
f (x, y) = α + xy

A + xy

increases in both variables when (12.2) holds and decreases in both variables when

A < α. (12.3)

Also every solution of Eq. (12.1) is bounded from above and from below by positive
constants. Indeed for all n ≥ 0,

min{α, 1}
max{A, 1} < xn+1 = α + xnxn−1

A + xnxn−1
<

max{α, 1}
min{A, 1} . (12.4)

When (12.2) holds, Eq. (12.1) has one, two, or three equilibrium points. In view of
Theorems 1.6–1.8 and the fact that Eq. (12.1) has no prime period-two solutions, we see
that every solution of Eq. (12.1) has a finite limit.

When (12.3) holds, Eq. (12.1) has a unique equilibrium point and we conjecture that
it is globally asymptotically stable.

Conjecture 12.1. Assume that (12.3) holds. Show that the equilibrium of Eq. (12.1) is
globally asymptotically stable.
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13. Equation #12:

xn+1 = α + βxnxn−1

1 + xn−1
, n = 0, 1, . . . . (13.1)

The main result for this equation is the following:

Theorem 13.1.

(a) Assume that
β ≤ 1.

Then every solution of Eq. (13.1) has a finite limit.

(b) Assume that
β > 1. (13.2)

Then Eq. (13.1) has unbounded solutions.

The proof of this theorem will be a consequence of the following lemmas.

Lemma 13.2. Assume that
β < 1.

Then every solution of Eq. (13.1) has a finite limit.

Proof. First we claim that every solution {xn}∞n=−1 of Eq. (13.1) is bounded from above

by
α

β
.

Otherwise for some N ≥ 0, which we can choose as large as we please,

xN+1 ≥ α

β
.

Hence,
α + βxNxN−1

1 + xN−1
≥ α

β

which implies that

xN >
1

β

(
α

β

)
.

Similarly this implies that

xN−1 >
1

β2

(
α

β

)
and eventually this process leads to a contradiction.

One can see that the function

f (x, y) = α + βxy

1 + y
, for x <

α

β
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increases in x and decreases in y.

The result follows by applying Theorem 1.2 in the interval

[
0,

α

β

]
. �

Lemma 13.3. Assume that
β = 1.

Then every solution of Eq. (13.1) converges monotonically to the equilibrium x̄ = α.

Proof. Note that the following two identities hold from which the result follows:

xn+1 − α = xn−1

1 + xn−1
(xn − α), for all n ≥ 0.

xn+1 − xn = 1

1 + xn−1
(α − xn), for all n ≥ 0.

This completes the proof. �

Lemma 13.4. Assume that
β > 1.

Then every positive solution of Eq. (13.1) is bounded from below by
α

β
.

Proof. Otherwise for some N ≥ 0, which we can choose as large as we please,

xN+1 ≤ α

β
.

Hence,
α + βxNxN−1

1 + xN−1
≤ α

β

which implies that

xN <
1

β

(
α

β

)
.

Similarly this implies that

xN−1 <
1

β2

(
α

β

)
and eventually this process leads to a contradiction. �

In view of Lemma 13.4, the function

f (x, y) = α + βxy

1 + y

is increasing in both variables.
Part (b) of Theorem 13.1 is now a consequence of Theorems 1.6–1.8.
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Note that Eq. (13.1) has no equilibrium points when

β > 1 + 1

4α
, (13.3)

exactly one equilibrium point, namely,

x̄ = 2α

when

β = 1 + 1

4α
, (13.4)

and exactly the two equilibrium points

x̄1 = 1 − √
1 − 4α(β − 1)

2(β − 1)
and x̄2 = 1 + √

1 − 4α(β − 1)

2(β − 1)

when

1 < β < 1 + 1

4α
. (13.5)

The long-term behavior of solutions of Eq. (13.1) resembles that of Eq. (7.1) and further
details will be omitted.

Appendix A

Table of the Global Character of the 30 nontrivial special cases of

xn+1 = α + βxnxn−1 + γ xn−1

A + Bxnxn−1 + Cxn−1
.

In this table we use the following abbreviations:
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ESC stands for “every solution has a finite limit”.
∃US stands for “there exist unbounded solutions”.
ESB stands for “every solution of the equation is bounded”.
ESC∗ stands for “we conjecture that every solution has a finite limit”.
ESCP2 stands for “every solution of the equation converges to a not

necessarily prime period-two solution”.

#1 : xn+1 = α

1 + xnxn−1
;

ESB
ESC∗; This conjecture has been confirmed

for α ≤ 2

#2 : xn+1 = α

(1 + xn)xn−1
;

This equation possesses the invariant:

xn−1 + xn + xn−1xn + α

(
1

xn−1
+ 1

xn

)
= constant

ESB

#3 : xn+1 = βxnxn−1

1 + xnxn−1
;

ESC
Local Stability � Global Stability

#4 : xn+1 = βxnxn−1

1 + xn−1
;

β ≤ 1 ⇒ ESC
β > 1 ⇒ ∃US
See Theorem 5.1
Local Stability � Global Stability
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#5 : xn+1 = γ xn−1

1 + xnxn−1
;

γ < 1 ⇒ ESC
γ = 1 ⇒ ESCP2
γ > 1 ⇒ ∃US
Has Period-Two Trichotomy
See Theorem 6.1

#6 : xn+1 = α + xnxn−1;
∃US
See Theorem 7.1

#7 : xn+1 = β + 1

xnxn−1
;

ESB
ESC∗; This equation can be transformed

to Eq. # 1

#8 : xn+1 = βxn + 1

xn−1
;

ESB ⇔ β < 1
β < 1 ⇒ ESC
See Theorem 9.1

#9 : xn+1 = α + xn−1

xnxn−1
;

ESC
See Theorem 10.1

#10 : xn+1 = (γ + xn)xn−1;
∃US
See Theorem 11.1

#11 : xn+1 = α + xnxn−1

A + xnxn−1
;

ESB
ESC∗; This conjecture has been

confirmed for α ≤ A
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#12 : xn+1 = α + βxnxn−1

1 + xn−1
;

β ≤ 1 ⇒ ESC
β > 1 ⇒ ∃US
See Theorem 13.1

#13 : xn+1 = α + xnxn−1

(A + xn)xn−1
;

ESB
ESC∗; This conjecture has been

confirmed for α ≤ A

See Theorem 2.1 in Part 2

#14 : xn+1 = α + xn−1

A + xnxn−1
;

ESB
ESC∗; This conjecture has been

confirmed for α ≤ A

See Theorem 3.1 in Part 2

#15 : xn+1 = α + xn−1

(1 + Bxn)xn−1
;

ESB
ESC∗; This conjecture has been

confirmed for αB ≤ 1
See Theorem 4.1 in Part 2

#16 : xn+1 = (1 + βxn)xn−1

A + xnxn−1
;

A > 1 ⇒ ESC
A = 1 ⇒ ESCP2
A < 1 ⇒ ∃US
Has Period-Two Trichotomy
See Theorem 5.1 in Part 2

#17 : xn+1 = (1 + βxn)xn−1

A + xn−1
;

β ≤ 1 ⇒ ESC
β > 1 and A �= 1 ⇒ ∃US
See Theorem 6.1 in Part 2
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#18 : xn+1 = α

1 + xnxn−1 + Cxn−1
;

ESB
ESC∗; This conjecture has been

confirmed for (α − C)2 ≤ 4

#19 : xn+1 = βxnxn−1

1 + Bxnxn−1 + xn−1
;

ESC
Local Stability � Global Stability
See Theorem 8.1 in Part 2

#20 : xn+1 = γ xn−1

1 + Bxnxn−1 + xn−1
;

γ ≤ 1 ⇒ ESC
γ > 1 ⇒ ESCP2
See Theorem 9.1 in Part 2

#21 : xn+1 = α + xnxn−1 + γ xn−1; ∃US

#22 : xn+1 = α + βxnxn−1 + xn−1

xnxn−1
;

ESB
ESC∗

#23 : xn+1 = α + βxnxn−1 + xn−1

xn−1
;

β < 1 ⇒ ESC
β ≥ 1 ⇒ Every solution increases

to ∞
See Theorem 12.1 in Part 2

#24 : xn+1 = α + βxnxn−1

1 + Bxnxn−1 + xn−1
;

ESB
ESC∗

#25 : xn+1 = α + γ xn−1

1 + Bxnxn−1 + xn−1
;

ESB
ESC∗
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#26 : xn+1 = βxnxn−1 + γ xn−1

1 + Bxnxn−1 + xn−1
;

ESB
ESC∗

#27 : xn+1 = α + βxnxn−1 + xn−1

A + xnxn−1
;

ESB
ESC∗

#28 : xn+1 = α + βxnxn−1 + xn−1

A + xn−1
;

∃US
See Theorem 13.1 in Part 2

#29 : xn+1 = α + βxnxn−1 + xn−1

Bxnxn−1 + xn−1
;

ESB
ESC∗

#30 : xn+1 = α + βxnxn−1 + xn−1

A + Bxnxn−1 + xn−1
;

ESB
ESC∗
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