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Abstract
By means of Guo–Krasnoselskii’s fixed point theorem, we prove an existence

result for positive solutions to a certain second-order boundary value problem.
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1 Introduction
Existence theory for boundary value problems (bvp for short) associated with nonlinear
ordinary differential equations play an important role in both theory and application
and still attract a great deal of interest. For recent developments in the theory, we refer
the reader to the monographs [1–3, 11, 12]. Singular bvps arise in the study of many
real world problems such as radial solution of nonlinear elliptic equations and in the
modelling of many physical phenomena where only positive solutions are meaningful.
A nice bibliography on the subject is found in each of the monographs [2, 3, 11], one
can see also the papers [4, 5, 10, 13].

This article deals with existence of positive solutions to the second-order boundary
value problem (bvp in short){

−u′′(t) + q(t)u(t) = φ (t) f(t, u(t)) t ∈ (0, 1) ,
lim
t→0

u(t) = lim
t→1

u(t) = 0, (1.1)
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where q, φ : (0, 1)→ R+ and f : (0, 1)× (0,+∞)→ R+ are continuous functions.
In all this work, we assume that the function q satisfies the following hypothesis:

lim inf
s→0

q(s) > 0, lim inf
s→1

q(s) > 0,∫ 1/2

0

q(s)ds =

∫ 1

1/2

q(s)ds = +∞ and∫ 1

0

s(1− s)q(s)ds <∞.

(1.2)

Our approach in this work is based on a fixed point formulation and since the non-
linearity in (1.1) is supposed to be nonnegative, we will use the Guo–Krasnoselskii’s
version of expansion and compression of a cone principal to prove our main existence
result. In the reminder of this section, we recall this powerful theorem and the necessary
theoretical background to its statement.

Let (E, ||.||) be a real Banach space. A nonempty closed convex subset C of E is
said to be a cone in E if C ∩ (−C) = {0E} and tC ⊂ C for all t ≥ 0.

Let Ω be a nonempty subset in E. A mapping A : Ω→ E is said to be compact if it
is continuous and A (Ω) is relatively compact in E.

The Guo–Krasnoselskii’s version of expansion and compression of a cone principal
in a Banach space consists in the following theorem.

Theorem 1.1. Let P be a cone in E and let Ω1,Ω2 be bounded open subsets of E with
0 ∈ Ω1 and Ω1 ⊂ Ω2. If T : P ∩ (Ω2rΩ1)→ P is a compact mapping such that either:

1. ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, or

2. ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2,

Then T has at least one fixed point in P ∩ (Ω2 r Ω1).

This work is motivated by those in [6, 7], where authors studied existence of nodal
solutions for the case where the ordinary differential equation (ode for short) in bvp
(1.1) is posed respectively on the half-line and on the real line and subject to Dirichlet
boundary conditions. The main hypothesis therein is inf

|t|≥T
q(t) > 0 for some T large and

notice that satisfying such a condition, the weight q is unintegrable. This situation makes
the arguments evoked in [8] for the construction of the Green’s function unusable. The
second difficulty encountered in this work consists in the fact that the realization of the
inequality ‖Tu‖ ≥ ‖u‖ requires to Green’s function to have the property of rising above
its maximum (see Assertion 2 in Lemma 2.4). We will see in the following section how
the condition of integrability imposed on q in (1.2) works to provide nice framework in
which all the difficulties mentioned above are overcome. In the last section is devoted
to the main result of this paper and its proof and it is ended by a corollary, deduced
from the main theorem, for the particular case of the bvp (1.1) where f(t, u) = uµ with
µ 6= 1.
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2 Fixed Point Formulation
We begin this section by a characterization of the solution to the ode

u′′ = qu, (2.1)

which will be helpful for the construction of the Green’s function associated with the
bvp (1.1).

Lemma 2.1. Assume that Hypothesis (1.2) holds and let v be a nontrivial solution to
the ode (2.1). Then v has at most one zeros and the limits lim

t→0
v(t), lim

t→1
v(t) exist and are

finite.

Proof. To the contrary, suppose that v(x1) = v(x2) = 0 with 0 ≤ x1 < x2 ≤ 1 and
v > 0 in (x1, x2). In one hand, there exist y1, y2 in (x1, x2) such that y1 < y2 and
v′(y1) > 0 > v′(y2) and in the other hand, we have v′′ = qv ≥ 0 in (x1, x2) leading to
v′ is nondecreasing in (x1, x2),then to the contradiction v′(y1) ≤ v′(y2).

Now, let us prove that lim
t→1

v(t) exist and is finite (lim
t→0

v(t) is checked similarly).

Since v admits at most one zero in (0, 1) one can suppose that v > 0 in (a, 1) for some
a ∈ (0, 1) and in such a situation v′ is increasing in (a, 1) and does not vanish in (b, 1)
with b ≥ a. Therefore, lim

t→1
v(t) exist and we distinguish the following two cases:

i) v′ < 0 in (b, 1), in this case we have lim
t→1

v(t) < v(b).

ii) v′ > 0 in (b, 1), in this case for all s ∈ (a, 1) we have

v′(s) =

(
v′(a) +

∫ s

a

v′′ (τ) dτ

)
=

(
v′(a) +

∫ s

a

q(τ)v (τ) dτ

)
≤

(
v′(a) + v (s)

∫ s

a

q (τ) dτ

)
leading to

v′(s)

v(s)
≤ v′(a)

v(s)
+

∫ s

a

q (τ) dτ ≤ v′(a)

v(a)
+

∫ s

a

q (τ) dτ.

Integrating on (a, t), we obtain

ln

(
v(t)

v(a)

)
≤ v′(a)

v(a)
+

∫ t

a

∫ s

a

q (τ) dτds ≤ v′(a)

v(a)
+

∫ 1

a

(1− s)q (s) ds,

and so,

v(t) ≤ v(a) exp

(
v′(a)

v(a)
+

∫ 1

a

(1− s)q (s) ds

)
.

This ends the proof.
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Hereafter, for any solution ϕ to the ode (2.1) we set ϕ(0) = lim
t→0

ϕ(t) and ϕ(1) =

lim
t→1

ϕ(t).
Let ϕ1 and ϕ2 be the solutions to the ode (2.1) satisfying

ϕ1

(
1

2

)
= 1, ϕ′1

(
1

2

)
= 0, ϕ2

(
1

2

)
= 1 and ϕ′2

(
1

2

)
= −1.

It is easy to see that ϕ1 ≥ 1 and the Wronksian W (ϕ1, ϕ2) = −1. Thus, any solution
to the ode (2.1) takes the form u = aϕ1 + bϕ2 with a, b ∈ R.

Since (
ϕ2

ϕ1

)′
=
ϕ′2ϕ1 − ϕ2ϕ

′
1

(ϕ1)
2 =

1

(ϕ1)
2 > 0 in (0, 1)

we have
ϕ2 (0)

ϕ1 (0)
<
ϕ2 (1)

ϕ1 (1)
and the system

{
xϕ1 (0) + yϕ2 (0) = 1
xϕ1 (1) + yϕ2 (1) = 0

has a unique solution (c1, c2).
In all what follows, we let Φq = c1ϕ1 + c2ϕ2 which has the following properties.

Lemma 2.2. Assume that Hypothesis (1.2) holds. Then the function Φq has the follow-
ing properties:

i) Φq(t) > 0, Φ′q(t) ≤ 0 and Φ′′q(t) ≥ 0 for all t ∈ (0, 1).

ii) The function
Φq

Φ′q
is bounded near 1.

Proof. Since Φq is a solution to the ode (2.1) and Φq(1) = 0, we have from Lemma 2.1
that Φq > 0 in (0, 1). Consequently, Φ′q ≤ 0 and Φ′′q ≥ 0 in (0, 1). From Hypohesis
(1.2), we conclude that there is a ∈ (0, 1) such that α = inf

t>a
q(t) > 0. For all t ≥ a we

have

(
−Φ′q(t)

)2
= 2

∫ 1

t

Φ′′q(s)
(
−Φ′q(s)

)
ds =

∫ 1

t

q(s)Φq(s)
(
−Φ′q(s)

)
ds

≥ α (Φq(t))
2 .

This leads to ∣∣∣∣Φq(t)

Φ′q(t)

∣∣∣∣2 =

(
Φq(t)

−Φ′q(t)

)2

≤ 1

α
for all t > a.

The proof of Lemma 2.2 is complete.
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Let Ψq be the function defined by

Ψq(t) = Φq(t)

∫ t

0

ds

Φ2
q(s)

for t ∈ [0, 1) .

Since Ψq(0) = 0, Ψ′q = qΨq and Φq > 0 in (0, 1), we conclude from Lemma 2.1 that
Ψq(1) <∞ and Ψq > 0 in (0, 1].

Lemma 2.3. Assume that Hypothesis (1.2) holds, then the function Ψq has the following
properties:

a) Ψq(t) > 0, Ψ′q(t) < 0 and Ψ′′q(t) ≥ 0 for all t ∈ (0, 1),

b) For all t ∈ (0, 1) , Φq(t)Ψ
′
q(t)−Ψq(t)Φ

′
q(t) = 1,

c) The function
Ψq

Ψ′q
is bounded near 0.

Proof. Assertions a) and b) are easy to check, so let us prove c). The proof of c) is
similar to that of Assertion ii) in Lemma 2.2.

Let Gq : [0, 1]× [0, 1]→ R+ be the function defined by

Gq(t, s) =

{
Φq (t) Ψq (s) if 0 ≤ t ≤ s < 1
Φq (s) Ψq (t) if 0 ≤ s ≤ t < 1.

Lemma 2.4. Assume that Hypothesis (1.2) holds, then

1. Gq(t, s) ≤ Gq(s, s) ≤ sup
0<t<1

Φq (t) Ψq(t) <∞ for all t, s ∈ (0, 1),

2. Gq(t, s) ≥ γq (t)Gq(s, s) for all t, s ∈ (0, 1) where

γq (t) = min
(
1, (Ψq (1))−1

)
min (Φq (t) ,Ψq (t)) .

Proof. Assertion 1 is obtained from the monotonicity of the functions Φq and Ψq. Let
us prove Assertion 2. For all t, s ∈ (0, 1), we have

Gq(t, s)

Gq(s, s)
=


Ψq (t)

Ψq (s)
≥ Ψq (t)

Ψq (1)
if t ≤ s

Φq (t)

Φq (s)
≥ Φq (t) if s ≤ t

≥ γq (t) .

This ends the proof.
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In all of this paper, we let E be the linear space defined by

E =
{
u ∈ C ((0, 1) ,R) : lim

t→0
u(t) = lim

t→1
u(t) = 0

}
.

Equipped with the sup-norm denoted by ‖·‖, E becomes a Banach space. By P we
denote the cone of E defined by

P = {u ∈ E : u(t) ≥ γq(t) ‖u‖ for all t ∈ (0, 1)} .

The following lemma provide a fixed point formulation to the bvp (1.1).

Lemma 2.5. Assume that Hypothesis (1.2) holds and

for all ρ > 0 there exists a nonincreasing function
Λρ : (0,+∞)→ (0,+∞) such that
f(t, w) ≤ Λρ (w) for all t ∈ (0, 1) and all w ∈ (0, ρ] ,
lim
t→0

G(t, t)φ (t) Λρ (rγq(t)) = lim
t→1

G(t, t)φ (t) Λρ (rγq(t)) = 0 and∫ 1

0

G (s, s)φ (s) Λρ (rγq(s)) ds <∞ for all r ∈ (0, ρ] .

(2.2)

Then there exists a continuous operator T : P r {0} → P such that for all r, R with
0 < r < R, T (P ∩ (B(0, R) rB(0, r))) is relatively compact in E and fixed points of
T are positive solutions to the bvp (1.1).

Proof. The is divided into two steps.
Step 1. In this step we prove the existence of the operator T. To this aim let u ∈

P r {0}. By means of Hypothesis (2.2) with R = ‖u‖, for all t ∈ (0, 1) we have from
Assertion 1 in Lemma 2.4 and Hypothesis (2.2),∫ 1

0

Gq(t, s)φ (s) f(s, u(s))ds ≤
∫ 1

0

Gq(s, s)φ (s) ΛR (Rγq(s)) ds <∞.

Thus, let v be the function defined by

v(t) =

∫ 1

0

Gq(t, s)φ (s) f(s, u(s))ds.

Clearly, v is continuous on (0, 1) and v(t) > 0 for all t ∈ (0, 1). Moreover, taking in
account the limit in Hypothesis (2.2), Assertion ii) in Lemma 2.2 and Assertion c) in
Lemma 2.3, we obtain by means of L’Hôpital’s rule

lim
t→0

v(t) ≤ lim
t→0

Ψq (t)

∫ 1

t

Φq(s)φ (s) ΛR (Rγq(s)) ds

= lim
t→0

(
Ψq (t)

Ψ′q(t)
Gq(t, t)φ (t) ΛR (Rγq(t))

)
= 0
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and

lim
t→1

v(t) ≤ lim
t→1

Φq (t)

∫ t

0

Ψq(s)φ (s) ΛR (Rγq(s)) ds

= lim
t→0

(
Φq (t)

Φ′q(t)
Gq(t, t)φ (t) ΛR (Rγq(t))

)
= 0.

Assertion 2 in Lemma 2.4 leads to

v(t) =

∫ 1

0

Gq(t, s)φ (s) f(s, u(s))ds

≥ γq (t)

∫ 1

0

Gq(s, s)φ (s) f(s, u(s))ds ≥ γq (t) ‖u‖ ,

proving that v ∈ P and the operator T : P r {0} → P where for u ∈ P r {0}

Tu(t) =

∫ 1

0

Gq(t, s)φ (s) f(s, u(s))ds,

is well defined.
Step 2. Let R > r > 0 and Φ be defined by

Φ(s) = φ (s) ΛR (rγq(s))

where ΛR is the function given by Hypothesis (2.2). Let us prove that the restriction of
T to Ω = P ∩ (B(0, R) rB(0, r)) is compact. First, we prove that T is continuous on
Ω. Let (un) be a sequence in Ω such that lim

n→∞
un = u. For all n ≥ 1 we have

‖Tun − Tu‖ = sup
t∈(0,1)

(|Tun (t)− Tu (t)|)

≤
∫ 1

0

Gq (s, s)φ (s) |f(s, un(s))− f((s, u(s))| ds.

Because of
|f(s, un(s))− f(s, u(s))| → 0, as n→ +∞,
|f(s, un(s))− f((s, u(s))| ≤ 2Φ(s) for all s > 0,

and
∫ 1

0

Gq (s, s) Φ (s) ds <∞,

Lebesgue’s dominated convergence theorem guarantees lim
n→∞

‖Tun − Tu‖ = 0. Hence,
we have proved that T is continuous.

For all u ∈ Ω, we have

‖Tu‖ ≤
∫ 1

0

Gq (s, s) Φ(s)ds,

proving that TΩ is bounded in E.
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Let 0 < η ≤ t1 ≤ t2 ≤ ζ < 1. For all u ∈ Ω, we have

|Tu (t2)− Tu (t1)| ≤ |Φq(t2)− Φq(t1)|
∫ ζ

0

Ψq (s) Φ(s)ds

+ Φq(η)

∫ t2

t1

Ψq (s) Φ(s)ds

+ |Ψq(t2)−Ψq(t1)|
∫ 1

η

Φq(s)Φ(s)ds

+ Ψq (ζ)

∫ t2

t1

Φq (s) Φ(s)ds.

The above estimate proves that TΩ is equicontinuous on compact intervals of (0, 1).
For all u ∈ Ω and t > 0, we have

Tu(t) ≤
∫ 1

0

Gq(t, s)Φ(s)ds = H(t)

Arguing as in Step 1, we obtain from Hypothesis (2.2) that

lim
t→0

H(t) = lim
t→1

H(t) = 0,

proving the equiconvergence of TΩ.
In view of Corduneanu’s compactness criterion [9, p. 62], TΩ is relatively compact

in E.
By simple computations, we see that fixed points of T are positive solutions to the

bvp (1.1), ending the proof of the lemma.

3 Main Result
The statement of the main result needs to introduce the following notations. Let

f 0 = lim sup
u→0

(
sup
t≥0

f(t, u)

u

)
, f∞ = lim sup

w→+∞

(
sup
t≥0

f(t, u)

u

)
,

f0 (σ) = lim inf
w→0

(
min
t∈Iσ

f(t, u)

u

)
f∞ (σ) = lim inf

w→+∞

(
min
t∈Iσ

f(t, u)

u

)
where for σ ∈ (0, 1/2), Iσ = [σ, 1− σ]. Let also,

Γ = sup
t∈(0,1)

(∫ 1

0

Gq(t, s)φ(s)ds

)
,

Θ(σ) = sup
t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)γq(s)ds

)
.
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Notice that if Hypothesis (2.2) is fulfilled, then Γ < ∞. Indeed, since for ρ = 1 the
function Λ1 is nonincreasing, we have∫ 1

0

Gq(t, s)φ(s)ds ≤
∫ 1

0

Gq(s, s)φ(s)ds =
(
Λ
)−1 ∫ 1

0

G (s, s)φ (s) Λds

≤
(
Λ
)−1 ∫ 1

0

G (s, s)φ (s) Λ1 (γq(s)) ds <∞,

where Λ = Λ1

(
max
s∈(0,1)

γq(s)

)
.

The main result of this work consists in the following theorem.

Theorem 3.1. Assume that Hypotheses (1.2) and (2.2) hold and there exists σ ∈ (0, 1/2)
such that one of the following situations (3.1) and (3.2) holds.

f 0Γ < 1 < f∞ (σ) Θ(σ), (3.1)

f∞Γ < 1 < f0 (σ) Θ(σ). (3.2)

Then the bvp (1.1) admits at least one positive solution.

Proof. Step 1. Existence in the case where (3.1) holds
Let ε > 0 be such that (f 0 + ε)Γ < 1. For such an ε, there exists R1 > 0 such that

f(t, w) ≤ (f 0 + ε)w for all w ∈ (0, R1), and let Ω1 = {u ∈ E, ‖u‖ < R1}.
Therefore, for all u ∈ P ∩ ∂Ω1 and all t ∈ (0, 1), we have

Tu(t) =

∫ 1

0

Gq(t, s)φ(s)f(s, u(s))ds ≤
∫ 1

0

Gq(t, s)φ(s)
(
f 0 + ε

)
u(s)ds

≤ ‖u‖
(
f 0 + ε

) ∫ 1

0

Gq(t, s)φ(s)ds ≤ Γ
(
f 0 + ε

)
‖u‖ ≤ ‖u‖

leading to ‖Tu‖ ≤ ‖u‖.
Now, suppose that f∞ (σ) > Θ(σ) for some σ ∈ (0, 1/2) and let ε > 0 be such that

(f∞ (σ)− ε)Θ(σ) > 1.

There exists R2 > R1 such that f(t, w) > (f∞ (σ)− ε)w for all t ∈ Iσ and all w ≥ R2.
Let γσ = min {γq(s) : s ∈ Iσ}, R̃2 = R2/γσ and Ω2 = {u ∈ E : ‖u‖ < R̃2}. For all
u ∈ P ∩ ∂Ω2, and all t ∈ (0, 1), we have

‖Tu‖ ≥ sup
t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)f(s, u(s))ds

)
≥ sup

t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)(f∞ (σ)− ε)u(s)ds

)
≥ (f∞ (σ)− ε) ‖u‖ sup

t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)γq(s)ds

)
≥ ‖u‖ (f∞ (σ)− ε)Θ(σ) ≥ ‖u‖ .
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We deduce from Assertion 1 of Theorem 1.1, that T admits a fixed point u ∈ P with

R1 ≤ ‖u‖ ≤ R̃2

which is, by Lemma 2.5, a positive solution to the bvp (1.1).
Step 2. Existence in the case where (3.2) holds
Let ε > 0 be such that (f0 (σ)− ε)Θ(σ) > 1, there exists R1 such that

f(t, w) > (f0 (θ)− ε)w

for all t ∈ Iσ and all w ∈ (0, R1). Let Ω1 = {u ∈ E : ‖u‖ < R1}, for all u ∈ P ∩ ∂Ω1

and all t ∈ (0, 1), we have

‖Tu‖ ≥ sup
t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)f(s, u(s))ds

)
≥ sup

t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)(f0 (σ)− ε)u(s)ds

)
≥ (f0 (σ)− ε) ‖u‖ sup

t∈(0,1)

(∫ 1−σ

σ

Gq(t, s)φ(s)γq(s)ds

)
≥ ‖u‖ (f0 (σ)− ε)Θ(σ) ≥ ‖u‖ .

Let ε > 0 be such that (f∞ + ε)Γ < 1, there exists Rε > 0 such that

f(t, w) ≤ (f∞ + ε)w + ΛRε (w) , for all t ∈ (0, 1) and w > 0,

where ΛRε is the functions given by Hypothesis 2.2 for R = Rε. Let

Φε (t) = φ(s)ΛRε (Rεγq(s))

R̃2 =
ΦεΓ

1− (f∞ + ε) Γ

with Φε = sup
t∈(0,1)

(∫ 1

0

G(t, s)Φε (s) ds

)
and notice that Γ−1(f∞ + ε)R + Φε ≤ R for all R ≥ R̃2.

Let R2 > max(R1, R̃2, Rε) and Ω2 = {u ∈ E, ‖u‖ < R2}. For all u ∈ P ∩ ∂Ω2

and all t ∈ (0, 1), we have

Tu(t) =

∫ 1

0

Gq(t, s)φ(s)f(s, u(s))ds

≤
∫ 1

0

Gq(t, s)φ(s) ((f∞ + ε)u(s) + Ψε (u(s))) ds

≤ (f∞ + ε) ‖u‖
∫ 1

0

Gq(t, s)φ(s)ds+ Φε

≤ (f∞ + ε) Γ ‖u‖+ Φε ≤ ‖u‖ .
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leading to
‖Tu‖ ≤ ‖u‖ .

We deduce from Assertion 2 of Theorem 1.1, that T admits a fixed point u ∈ P with

R1 ≤ ‖u‖ ≤ R2

which is, by Lemma 2.5, a positive solution to the bvp (1.1).
The proof of Theorem 3.1 is complete.

We obtain from Theorem 3.1 the following existence result for positive solutions to
the typical case of the bvp (1.1) where f(t, u) = m (t)uµ with µ 6= 1.

Corollary 3.2. Assume that

f(t, u) = uµ with µ 6= 1,
lim
t→0

Gq(t, t)φ(t) max (1, (γq (t))µ) =

lim
t→1

Gq(t, t)φ(t) max (1, (γq (t))µ) = 0

and
∫ 1

0

Gq(s, s)φ(s) max (1, (γq (s))µ) ds <∞.

Then the bvp (1.1) admits a positive solution.

Proof. For all ρ > 0 and w ∈ (0, ρ], we have

f (t, w) = wµ ≤ Λρ(w) =

{
ρµ if µ ≥ 0,
wµ if µ < 0

and

Λρ(rγq (t)) =

{
ρµ if µ ≥ 0,
rµ (γq (t))µ if µ < 0

= max (ρµ, rµ) max (1, (γq (t))µ) .

Thus, we obtain from the above calculation that for ν = 0, 1 we have

lim
t→ν

Gq(t, t)φ(t) max (1,Λρ(rγq (t)))

= max (ρµ, rµ) lim
t→ν

Gq(t, t)φ(t) max (1, (γq (t))µ) = 0.

Moreover, we have{
f 0 = 0 and f∞ (σ) = +∞ for all σ ∈ (0, 1/2) , if µ > 0,
f∞ = 0 and f0 (σ) = +∞ for all σ ∈ (0, 1/2) , if µ ≤ 0.

Therefore, Theorem 3.1 guarantees existence of a positive solution to such a case of the
bvp (1.1).

Remark 3.3. Theorem 3.1 holds true if we replace Hypothesis (1.2) by one of the fol-
lowing assumptions

lim inf
s→0

q(s) > 0,
∫ 1/2

0

q(s)ds = +∞ and
∫ 1

0

sq(s)ds <∞,

lim inf
s→1

q(s) > 0,
∫ 1

1/2

q(s)ds = +∞ and
∫ 1

0

(1− s)q(s)ds <∞.
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