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Abstract

We present examples of nonstandard finite difference (NSFD) schemes that
preserve positivity while simultaneously exploiting various ways unity (i.e. the
number “1”) can be represented algebraically in these expressions. NSFD schemes
(also known as “Mickens discretizations”) use nonstandard numerical techniques
to approximate derivatives and other features in ordinary and partial differential
equations. These NSFD schemes can often be used to produce numerical solu-
tions to differential equations that have particular desired properties like increased
accuracy, preserving positivity, and maintaining boundedness.
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1 Introduction
In this paper we construct a number of nonstandard finite difference (NSFD) schemes
with certain desired properties and demonstrate their use in the numerical solution of
ordinary differential equations (ODEs). NSFD schemes are specialized finite difference
methods that can be used to approximate numerical solutions of differential equations.
There are various kinds of NSFD schemes, which are often constructed using rules artic-
ulated by Mickens [13,14,16]. Our motivation for the work in this paper is to expand the
repertoire of possible NSFD schemes available for solving ODEs by incorporating ap-
proximations of unity that utilize expressions like

xk
xk+1

or
xk+1

xk
. Our goal is to identify
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NSFD schemes for our selected ODE whose numerical solutions have a specific desired
property, i.e., we want to identify NSFD schemes that result in numerical solutions that
are positivity preserving, i.e. they remain nonnegative over the entirety of their domain.
This is especially important for differential equations that represent physical quantities
such as density or time and contain square roots of the independent variable.

There are many examples of ODE models of nature such as the Lotka–Volterra
model (describes predator-prey dynamics) [22] or the SIR epidemic model (investigates
the propagation of infectious disease) [7]. Only a limited number of models use ODEs
that can be solved analytically in terms of a finite combination of elementary functions
and so solutions are often found using numerical approximation techniques. In the past
forty years NSFD schemes [1, 2, 10–12, 15] have gained popularity for use in the devel-
opment of numerical solutions to such models. This is due to their ability to give rise to
numerical solutions that preserve the same qualitative features as the corresponding dif-
ferential equation modeling the phenomena of interest; These desired features include
dynamic consistency [18], preserving positivity of the solution [17,23], maintaining the
stability behaviour of fixed points [8] and having the same fixed points [20] to name a
few.

There are other examples of NSFD schemes that take advantage of approximations
of unity previously published in the research literature. In [3], this idea is used in the
numerical solution of partial differential equations that involve cross-diffusion. In [6]
approximations of unity are used in the construction of NSFD schemes to numerically
solve productive-destructive systems of ODEs. In [4], they examine ODE models in
population dynamics using NSFD schemes that take advantage of the “1” approximation
and that preserve qualitative features of the dynamical system.

Specifically, in this paper we present multiple NSFD schemes that utilize approx-
imations of unity and preserve positivity of the solution for a selected ODE example
where this is required due to the nature of the equation, which contains square roots
of the dependent variable. We find that although there are numerous possible NSFD
schemes that can be derived from the unity approximation, only a few satisfy our re-
quirements to produce positivity-preserving solutions.

The rest of this article is organized as follows. In Section 2 we present all pos-
sible NSFD schemes that use expressions equivalent to unity and use them to obtain
numerical solutions to a simple first-order initial-value problem (IVP). The eight pos-
sible NSFD schemes that utilize approximations of unity are classified into six distinct
schemes, which we analyze to identify the schemes that have the positivity-preserving
property we desire. In Subsection 2.3 we present the numerical performance for each
scheme. We conclude with a summary of results and discussion of possible future work
in Section 3. Our results show that for our selected ODE, our newly created NSFD
schemes do not have improved accuracy over a well-known NSFD scheme, the implicit
Euler method.
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2 NSFD Schemes Using Approximations of Unity
Among various techniques for approximating ordinary differential equations numeri-
cally, nonstandard finite difference schemes have been proved to be one of the most
efficient and versatile approaches in recent years [19,21]. In this section, we derive and
apply NSFD schemes that use approximations of unity to obtain numerical solutions of
a particular simple initial-value problem (2.1) and (2.2), that we call Example A.

2.1 A Simple ODE Example
Below we consider a number of possible NSFD schemes that exploit various ways the
number “1” can be approximated algebraically as we discretize Example A, which is
the initial value problem below:

dx

dt
= −λ

√
x, (2.1)

for t ≥ 0 with λ > 0 and with initial condition

x(0) = x0 > 0. (2.2)

From Equations (2.1) and (2.2) we know that the solution must be nonnegative, bounded
and monotonically decreasing for all t ≥ 0. These results follow from the following
observations:

• Clearly x(t) = 0 is a solution to Equation (2.1) and is the fixed point.

• Since x(0) > 0 and
dx

dt
< 0, the solution x(t) can only decrease.

The exact solution is

x(t) =


(
√
x0 −

λ

2
t

)2

, 0 < t ≤ tc =
2
√
x0
λ

0 , t > tc.

(2.3)

Note that the exact solution in Equation (2.3) is nonnegative, bounded and monotoni-
cally decreasing for all t ≥ 0. This is illustrated by the graph in Figure (2.1) below for
the case λ = 1 and x0 = 1. Observe that Example A in (2.1) has one fixed point, at
x = 0. We will try to find NSFD schemes that match these properties of Example A.

Roeger and Mickens [23] first studied IVPs of the form
dx

dt
= −λxα, x(t0) =

x0 > 0 for λ > 0 and α > 0, and such equations often appear in the modelling of a broad
range of physical and engineering phenomena [13, 16]. In [23] Roeger and Mickens
proved the existence of an exact finite difference scheme when α > 0. Our Example A
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Figure 2.1: Graph of exact solution to Example A

is the special case when α = 1/2 and the corresponding exact finite difference scheme
is

xk+1 =

(
√
xk −

λh

2

)2

. (2.4)

Note the exact finite difference scheme can also be written

xk+1 − xk
h

= −λ
√
xk +

λ2h

4
. (2.5)

The exact scheme in Equation (2.4) is clearly positivity-preserving.

2.2 All Possible NSFD Schemes For Example A Utilizing The “1”
Approximation

In this subsection we shall tabulate and categorize possible NSFD schemes utilizing the
“1” approximation that we can apply to solve Example A. We can view Equation (2.1)
as:

dx

dt
= −λ

√
x
(x
x

)
, (2.6)

where “1” i.e. “
(x
x

)
” is treated as the expression in the parenthesis given in Equation

(2.6) and is the source of the unity approximation idea.



Construction of Positivity-Preserving NSFD Schemes 81

Possible discretizations of “1” in the right-hand side of Equation (2.6) can be ex-
plored using various choices for A,B and C in Equation (2.7), which is a discretized
version of Equation (2.1):

xk+1 − xk
h

≈ −λ
√
xA

(
xB
xC

)
. (2.7)

Assuming a 2-point stencil, A,B and C can all be either k or k + 1. This results in a
total of eight possibilities (i.e. we have three parameters each of which can take on two
possible values =23) leading to the six distinct numerical schemes presented in Table
2.1.

Table 2.1: All Possible Finite Difference Schemes for Example A

A B C
√
x Label Scheme

k k k
√
xk Scheme 0 Explicit Forward Euler

k + 1 k k
√
xk+1 Scheme 1 Implicit Euler

k k + 1 k
xk+1√
xk

Scheme 2 NSFD

k k k + 1
(xk)

3
2

xk+1

Scheme 3 NSFD

k + 1 k + 1 k + 1
√
xk+1 Scheme 1 Implicit Euler

k k + 1 k + 1
√
xk Scheme 0 Explicit Forward Euler

k + 1 k k + 1
xk√
xk+1

Scheme 4 NSFD

k + 1 k + 1 k
(xk+1)

3
2

xk
Scheme 5 NSFD
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We will analyze each of the six distinct schemes in the subsequent sub-subsections.

2.2.1 Scheme 0

For Scheme 0, we can choose A = k,B = k and C = k or A = k,B = k + 1 and
C = k+ 1 in Equation (2.7) which results in a scheme that is the explicit forward Euler
method [9]:

xk+1 − xk
h

≈ −λ
√
xk

(
xk
xk

)
= −λ

√
xk. (2.8)

Upon rearranging Equation (2.8), this results in the following scheme:

xk+1 =
√
xk(
√
xk − λh). (2.9)

To preserve positivity
√
xk must be greater than or equal to λh for all k. However

Scheme 0 is not a positivity-preserving scheme because for some k > 0, xk will be less
than (λh)2.

2.2.2 Scheme 1

Choosing A = k + 1, B = k and C = k or A = k + 1, B = k + 1 and C = k + 1 in
Equation (2.7) results in Scheme 1 which is equivalent to the implicit backward Euler
scheme [9].

xk+1 − xk
h

≈ −λ√xk+1

(
xk
xk

)
= −λ√xk+1 (2.10)

or,
xk+1 + λh

√
xk+1 − xk = 0. (2.11)

Let uk =
√
xk, then Equation (2.11) becomes

u2k+1 + (λh)uk+1 − u2k = 0. (2.12)

Solving the quadratic Equation (2.12) in uk+1 for the positive root gives,

uk+1 =
1

2

[
−λh+

√
λ2h2 + 4u2k

]
(2.13)

and therefore,

xk+1 = u2k+1 =
1

4

[
−λh+

√
λ2h2 + 4xk

]2
. (2.14)

From Equation (2.14), it is clear that xk+1 is always positive since the term in the radical
is always greater than λh when x0 > 0 and thus Scheme 1 is a positivity-preserving
scheme. Note Scheme 1 has a fixed point at x = 0.
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2.2.3 Scheme 2

For Scheme 2, we chose A = k,B = k + 1 and C = k in Equation (2.7) which results
in

xk+1 − xk
h

≈ −λ
√
xk

(
xk+1

xk

)
= −λxk+1√

xk
. (2.15)

Solving Equation (2.15) for xk+1 and simplifying gives

xk+1 =

( √
xk

hλ+
√
xk

)
xk. (2.16)

Since λ > 0, h > 0 and x0 > 0 it is clear xk > 0 for all k so Scheme 2 is a positivity
preserving NSFD scheme. Further, since in Equation (2.16) the numerator is clearly
always less than the denominator, xk+1 < xk for all k so the numerical solution also
decreases smoothly to zero as k increases. Note, Scheme 2 has a fixed point at x = 0.

2.2.4 Scheme 3

Scheme 3 is formed by selecting A = k,B = k and C = k + 1 in Equation (2.7) to
produce

xk+1 − xk
h

≈ −λ
√
xk

(
xk
xk+1

)
= −λ x

3/2
k

xk+1

. (2.17)

Re-arranging Equation (2.17) forms a quadratic in xk+1 given by

x2k+1 − xkxk+1 + λhx
3/2
k = 0. (2.18)

Solving Equation (2.18) for xk+1 we obtain

xk+1 =
1

2

{
xk ±

√
x2k − 4λhx

3/2
k

}
(2.19)

where we choose the positive root. We know that xk decreases monotonically because

it is clear that the expression
xk+1

xk
=

1

2

{
1 +

√
1− 4λh
√
xk

}
< 1 for all k. When

√
xk−

4λh < 0 or xk < 16λ2h2 the expression in Equation (2.19) will produce complex values
when the term in the radical becomes negative as xk decreases to zero. So Scheme 3 is
not positivity-preserving.

2.2.5 Scheme 4

Selecting A = k + 1, B = k and C = k + 1 in Equation (2.7) results in another distinct
scheme that we label Scheme 4. Thus, Scheme 4 is:

xk+1 − xk
h

≈ −λ√xk+1

(
xk
xk+1

)
= −λ xk√

xk+1

(2.20)
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Letting xk = u2k in Equation (2.20), results in

u2k+1 − u2k
h

= −λ u2k
uk+1

. (2.21)

An explicit expression for Scheme 4 is obtained by using the standard formula [5] for
the solution to the cubic polynomial at3 + bt2 + ct + d = 0 where a = 1, b = 0, c =
−u2k, d = λhu2k and the variable is t = uk+1:

u3k+1 − u2kuk+1 + λhu2k = 0. (2.22)

Since we can’t easily write down an explicit expression for xk+1 in terms of xk we
verified through numerical experiments that Scheme 4 is not positivity-preserving.

2.2.6 Scheme 5

The last unique scheme, Scheme 5 is formed by selecting A = k + 1, B = k + 1 and
C = k in Equation (2.7) which results in

xk+1 − xk
h

≈ −λ√xk+1

(
xk+1

xk

)
= −λ

x
3/2
k+1

xk
. (2.23)

Letting xk = u2k and re-arranging we obtain the following cubic

λhu3k+1 + u2ku
2
k+1 − u4k = 0 (2.24)

which we will solve again using the formula for the solution to the generic cubic with
coefficients a = λh, b = u2k, c = 0, and d = −u4k. Scheme 5 is a positivity-preserving
NSFD scheme, which is verified through numerical experimentation with the results
given in Subsection 2.3. By examining Equation (2.23) we find that the fixed point for
Scheme 5 is x = 0.

2.3 Numerical Results
In this section we analyse the qualitative nature and computational performance of each
of the six distinct finite difference Schemes 0 through 5 by using each to approximate
numerical solutions to Example A with parameter λ = 1 and an initial value of x0 = 1,
which corresponds to tc = 2. In other words, the analysis in this section pertains to the
IVP:

dx

dt
= −
√
x, x(0) = 1. (2.25)

The corresponding true solution is shown in Figure 2.1 and given by:

x(t) =


(

1− 1

2
t

)2

, 0 < t ≤ 2

0 , t > 2.

(2.26)
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In Table 2.2 below we summarize the six distinct numerical schemes and their status
regarding whether their corresponding numerical solutions preserve positivity. Schemes
0 and 1, explicit forward Euler and implicit Euler, respectively, are obtained whenB and
C in Equation (2.7) are equal, and therefore don’t contain an approximation of unity. We
don’t consider explicit forward Euler to be a NSFD scheme, while technically implicit
Euler is a NSFD scheme, since it contains a nonlocal approximation. We note that only
Schemes 1, 2 and 5 are NSFD schemes that preserve positivity. All the finite difference
schemes considered have the same fixed points as the ODE being approximated. We

Table 2.2: Properties of Numerical Schemes 0 through 5

Scheme 0 1 2 3 4 5
Uses “1” Approximation No No Yes Yes Yes Yes

NSFD Scheme No Yes Yes Yes Yes Yes
Positivity Preserving No Yes Yes No No Yes
Same Fixed Points Yes Yes Yes Yes Yes Yes

conducted numerical experiments using Schemes 0 through 5 but have only presented
the numerical results of the schemes that are positivity-preserving in this section. Tables
2.3, 2.4, and 2.5 provide some numerical results implementing the positivity-preserving
schemes: Scheme 1, Scheme 2 and Scheme 5 on Example A. Each table presents the
L∞, L1 and L2 error norms corresponding to

h = 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001.

Table 2.3: Scheme 1

Scheme 1 ‖xnum − xtrue‖L∞ ‖xnum − xtrue‖L1 ‖xnum − xtrue‖L2

h = 0.0500 9.04269906e− 03 2.49861506e− 01 4.25803031e− 02
h = 0.0250 4.55941654e− 03 2.49960864e− 01 3.02683480e− 02
h = 0.0100 1.83314683e− 03 2.49992784e− 01 1.92043351e− 02
h = 0.0050 9.18139387e− 04 2.49998015e− 01 1.35939026e− 02
h = 0.0025 4.59458904e− 04 2.49999459e− 01 9.61742521e− 03
h = 0.0010 1.83877241e− 04 2.49999904e− 01 6.08452185e− 03

3 Conclusion and Future Work
In this article, we examined Mickens discretizations on a specific ODE, while simul-
taneously exploiting various ways the number “1” can be represented discretely. From
the eight possible NSFD schemes that utilize approximations of unity, we obtained six
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Table 2.4: Scheme 2

Scheme 2 ‖xnum − xtrue‖L∞ ‖xnum − xtrue‖L1 ‖xnum − xtrue‖L2

h = 0.0500 2.56724918e− 02 7.28337343e− 01 1.22077275e− 01
h = 0.0250 1.32835924e− 02 7.38528287e− 01 8.86385799e− 02
h = 0.0100 5.43293498e− 03 7.45206577e− 01 5.70338177e− 02
h = 0.0050 2.73745813e− 03 7.47559691e− 01 4.05726793e− 02
h = 0.0025 1.37409764e− 03 7.48766944e− 01 2.87775662e− 02
h = 0.0010 5.50943336e− 04 7.49503140e− 01 1.82345380e− 02

Table 2.5: Scheme 5

Scheme 5 ‖xnum − xtrue‖L∞ ‖xnum − xtrue‖L1 ‖xnum − xtrue‖L2

h = 0.0500 4.09252162e− 02 1.18979449e+ 00 1.96435908e− 01
h = 0.0250 2.15975670e− 02 1.21718416e+ 00 1.44856744e− 01
h = 0.0100 8.95835266e− 03 1.23596625e+ 00 9.42461363e− 02
h = 0.0050 4.53731893e− 03 1.24278334e+ 00 6.73222523e− 02
h = 0.0025 2.28375965e− 03 1.24633140e+ 00 4.78544609e− 02
h = 0.0010 9.17200759e− 04 1.24851437e+ 00 3.03631095e− 02

different schemes. From these six schemes, the goal was to identify NSFD schemes that
produce numerical solutions that preserve positivity.

Our research shows that Scheme 1, Scheme 2 and Scheme 5 are numerical schemes
that preserve positivity. In the case of Scheme 1 and Scheme 2 we have provided anal-
ysis demonstrating this result. For Scheme 5 we used numerical justification to show it
generates positivity-preserving numerical solutions. Our numerical experiments also es-
tablish that Scheme 1 outperforms both Scheme 2 and Scheme 5 in terms of the accuracy
of the numerical solution when compared to the exact solution. Scheme 2 outperforms
Scheme 5. Thus, we write the schemes in order of decreasing accuracy:

Scheme 1 > Scheme 2 > Scheme 5.

To summarize: Scheme 1, which is the implicit Euler method, generates a numerical
solution to Example A that not only preserves positivity, but is also the most accurate.
Figure (3.1) compares the error between the exact solution in Equation (2.26) and the
numerical solutions generated by Scheme 1, Scheme 2 and Scheme 5. The plots of
log(error) versus log(h) show that all three schemes have the same order of accuracy
since the lines in the figure are all parallel. One can also see that all three schemes are
second-order schemes, since the slopes of the lines in the figure are roughly equal to 2.
The line representing the error in Scheme 1 is the most negative, thus it corresponds to
the most accurate scheme.

Future investigations may include examination of other differential equations whose
numerical approximation would be likely to include expressions that involve approxi-
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Figure 3.1: Comparing Numerical Errors Of Schemes 1, 2 and 5

mations of unity. For example,

dx

dt
= −λxP , where P is rational. (3.1)

was considered by Roeger and Mickens [23], for the case where λ > 0 and P > 0. We
believe this work could be extended in multiple ways: applications of approximations
of unity and using other nonstandard approximations of the derivative. For example,
Equation (3.1) can be re-written as

∆x

∆t
≈ −λ(xa)

L (xb)
M

(xc)
N

(3.2)

where a, b, c are either k or k + 1 and L + M − N = P . The left-hand derivative can
be approximated in multiple different ways using nonstandard methods. There are an
infinite number of possibilities for L,M and N and eight choices for a,b and c that can
be explored.

Another suggestion for future work is to increase the size of the stencil used to
approximate the differential equation, thus one could examine unity approximations
with

xk+1

xk−1
. This would provide a larger number of possible NSFD approximations to

evaluate that we have considered here.
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