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Abstract

We use discrete fractional calculus (DFC) to generalize the discrete-time gra-
dient descent law. A discrete fractional-order gradient descent law (DFOGDL) is
designed based on Caputo fractional difference in the form of a backward differ-
ence. We use DFOGDL to estimate the parameters of a classical integer order
discrete-time system. Lastly, we prove the stability of estimating the unknown
parameters of parametric function using DFOGDL.
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1 Introduction
Generally, function approximation is a method of finding a function in a class that
matches the behavior of the function’s uncertainty. According to Weierstrass theo-
rem [10], any sufficiently smooth function can be approximated by a polynomial with
sufficiently large coefficients.

Function approximation is a learning technique that is used to estimate the uncer-
tainty Y by providing approximated function Ŷ . The learning process needs a dynamic
operator to be performed such as differentiation or difference operators. The derivative
is used as a memory in continuous-time systems and the difference operator is used in
discrete-time systems, however, the authors in [13] used the difference operator instead
of derivatives in the continuous-time system.
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Gradient descent algorithm is the most common iterative process that is used to
approximate the uncertainty on-line. The idea of the gradient descent law is to drive
the value of the estimated parameters towards their actual value by minimizing the cost
function.

In this paper, we employ the advantages of the DFC to approximate uncertain func-
tions via generalization of the gradient descent law in discrete-time domain to include
the fractional orders, and then use it to approximate the uncertainty.

A discrete systems can be achieved by discretizing the continuous counterparts
through a sampling process, where the sampling time has to be carefully chosen. Or
some systems are naturally in discrete form such as a model described by difference
equations that represent the number of infected people per day, where the number of
infected individuals changes at only certain time intervals. In general, the difference
operator has two criteria, forward difference and backward difference, in this paper,
we use the backward difference due its features over the forward difference, which is
explained later in the paper.

Any discrete-time signal has a value for every discrete point of time. In this paper,
we will symbolize these discrete points of time by the constant normalized integer index
k.

Historically, inordinate attention has been paid to continuous fractional calculus, and
only in the last few decades DFC has come into its own [1–3,5,7,8,12]. Atici and Eloe
developed and applied a transformation method for fractional calculus problems that
expanded upon the approach formulated by Miller and Ross’s exploration of fractional
difference equations [6, 7].

The stability of the delta fractional order Caputo difference equation has been stud-
ied in [8]. The stability theorem for a discrete fractional Lyapunov direct method has
been proven. In [4], we generalized the order of gradient descent law in continuous-time
to approximate the uncertainty of the controller’s parameter. However, to our knowl-
edge, there are no studies that use discrete fractional order techniques for estimating the
parameter of classical discrete systems. In this paper, we utilize fractional order cal-
culus, in the gradient descent law, to increase the degrees of freedom and thus provide
extra flexibility to the designer.

More specifically, DFC is employed for generalizing the difference operator of the
classical gradient descent law. The new DFOGDL is used to estimate the parameters of
structured uncertainty based on backward difference technique. The stability analysis
of using DFOGDL is performed based on the stability analysis of using classical integer
order gradient descent law.

2 Preliminaries
This section seeks to define and explain the underlying concepts behind the DFC.

Definition 2.1 (See [7, 9]). For a function x(k), the forward and backward difference
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operators Delta (∆) and Nabla (∇) are defined by

∆mx(k) = ∆(∆m−1x(k)), (2.1)

∇mx(k) = ∇(∇m−1x(k)), (2.2)

where ∆x(k) = x(k + 1) − x(k), ∇x(k) = x(k) − x(k − 1), m = 1, 2, 3, . . . , and
k ∈ Na = {a, a+ 1, . . . }.

For the sake of simplicity, we choose the initial index to be a = 0. Next definition
will introduce the generalization of the falling and raising factorial power.

Definition 2.2 (See [7, 9]). The generalization of the raising factorial for non-integer
real power α is

kα =
Γ(k + α)

Γ(k)
, (2.3)

and the generalization of the falling factorial for non-integer real power is

kα =
Γ(k + 1)

Γ(k − α + 1)
, (2.4)

where Γ(·) is the Gamma function, α ∈ R.

The fractional order sum introduced next is a generalization of the integer order one.

Definition 2.3 (See [7, 9]). For f : Na → R, the backward fractional sum (∇−α) of
order v is defined by

∇−αa f(k) =
1

Γ(α)

k∑
s=a

(k − s+ 1)α−1f(j), (2.5)

where k ∈ Na.

Definition 2.4 (See [7, 9]). For f : Na → R, the forward fractional sum (∆−α) of order
α is defined by

∆−αa f(k) =
1

Γ(α)

k−α∑
s=a

(k − s− 1)α−1f(j), (2.6)

where a is the initial value and k ∈ Na+α.

The DFOGDL will be designed using the backward operator (∇−v) because it maps
functions defined on Na to functions defined on Na+1, which is the same domain. On
the contrary, the operator ∆−v maps functions from Na to Na+v. The backward Caputo
fractional difference for order α is

C∇α
af(k) =

1

Γ(m− α)

k∑
s=a

(k − s+ 1)m−α−1∇mf(j). (2.7)
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3 Gradient Descent Law and Problem Statement
In this section, we will introduce the parametric discrete function that will be approx-
imated by the gradient descent algorithm. The classical gradient descent law will be
introduced including its stability analysis. The stability will be proven using the matrix
convergence stability. Equation (3.1) represents the linear parametric model, which will
be considered. The unknown parameter vector W ∈ Rn will be estimated on-line using
Ŵ (k) vector.

Y (k) = W>Φ(x(k)), (3.1)

where Y ∈ R and Φ(x(k)) ∈ Rn is a known regressor.
We define the parameter error vector as a difference between the estimated parameter

vector and the actual unknown vector W̃ (k) = Ŵ (k)−W . Then, we can represent the
approximation error as a function of the parameter error as follows

Ψ(k) = ŷ(k)− y(k),

= Ŵ>(k)Φ(x(k))−W>Φ(x(k)),

= W̃>(k)Φ(x(k)). (3.2)

The normalized gradient descent algorithm [11] will be applied to update the estimated
parameter vector on-line. It can be designed based on the cost function. Here, the cost
function that we need to minimize is the approximation error Ψ. We defined it as

J(k) =
Ψ2(k)

2m(k)
, (3.3)

wherem = ν+‖Φ(k)‖2. The cost function J is minimized with respect to the estimated
parameter vector Ŵ in a steepest descent direction. Then, the gradient descent law is

Ŵ (k) = Ŵ (k − 1)− γ ∂J(k − 1)

∂Ŵ (k − 1)
, (3.4)

= Ŵ (k − 1)− γΦ(x(k − 1))Ψ(k − 1)

ν + ‖Φ(x(k − 1))‖2
, (3.5)

where ν > 0 and γ > 0 is the learning gain. The difference equation (3.5) can be
rewritten as

∇Ŵ (k) = −γΦ(x(k − 1))Ψ(k − 1)

m(k − 1)
. (3.6)

The parameter error vector can be represented as

W̃ (k) = W̃ (k − 1)− γΦ(x(k − 1))Ψ(k − 1)

m(k − 1)
, (3.7)

= W̃ (k − 1)− γΦ(x(k − 1))Φ>(k − 1)W̃ (k − 1)

m(k − 1)
, (3.8)
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= W̃ (k − 1)− γAm(k − 1)W̃ (k − 1), (3.9)

where Am(·) =
Φ(x(·))Φ(x(·))>

m(·)
. At the step time k + 1

W̃ (k + 1) = [I − γAm(k)]W̃ (k), (3.10)

where I is the n-by-n identity matrix. Now, let us consider the matrix ΦΦ>.

Theorem 3.1. For the matrices A1 and A2,

Rank(A1A2) ≤ min {Rank(A1),Rank(A2)} . (3.11)

Proof. Since the rows of the matrix A1A2 are linear combinations of the rows of the
matrix A2, the number of linearly independent rows of the matrix A1A2 is less than the
number of linearly independent rows of the matrix A2. Hence,

Rank(A1A2) ≤ Rank(A2). (3.12)

Apply the same argument to the columns of A1

Rank(A1A2) ≤ Rank(A1), (3.13)

where the row and column ranks of (A1) are equal since Rank(A1) = Rank(A>1 ).

Lemma 3.2. The positive semi-definite matrixA = vv>, where v be an n-by-1 non-zero
vector, has only one non-zero eigenvalue:

λ(A) = ‖v‖2. (3.14)

Proof. By using the rank-nullity theorem that states that if A is an n-by-n matrix, the
rank of A plus the nullity of A is equal to n. The kernel of A is

kernel(A) = {u : Au = 0}, (3.15)

where the dimension of the kernel of the matrix A is the nullity of A. From Theorem
3.1, the rank of A is 1, thus, it has n − 1 linearly independent solutions. Moreover, the
range of A is

Range(A) = {b : ∃ u with Au = b}, (3.16)

where the rank of A is the dimension of the range of A which is equal 1, so A has n− 1
linearly independent eigenvectors corresponding to n− 1 zero eigenvalues.

Since Am =
ΦΦ>

ν + Φ>Φ
and ν > 0, Am is an n-by-n bounded positive semi-definite

symmetric matrix with n−1 zero eigenvalues and only one positive less than one eigen-
value. The stability will be studied by using a matrix convergence analysis. It is well
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known that a matrix is convergent if and only if the modulus of that matrix is less
than one. Thus, matrix [I − γAm(k)], whose eigenvalues are 1 − γλ(Am(k)), where
λ(Am(k)) is the eigenvalues of Am(k), is a convergent matrix if |1− γλ(Am(k))| < 1,
which means

−1 < 1− γλ(Am(k)) < 1,

0 < γλ(Am(k)) < 2.

Hence, the learning rate could be chosen as follows

0 < γ <
2

λmax(Am(k))
(3.17)

to guarantee the convergence of the matrix [I−γAm(k)]. Therefore, the parameter error
vector is stable if the condition (3.17) is satisfied. For a more robust but expensive cal-
culation, the learning rate γ could be updated every iteration since the regressor Φ(x(k))
is accessible and λmax(Am(k)) can be calculated. Thus,

0 < γ(j) <
2

λ(Am(j))
(3.18)

as requirement to verify for γ(j), with (3.10) can be rewritten as

W̃ (k) = W̃ (0)−
k−1∑
j=0

γ(j)Am(j)W̃ (j). (3.19)

Note that the order of the difference operator in (3.6) is 1, which can be generalized to
cover fractional orders. In the next section, we will generalize the classical integer order
of the discrete gradient descent law to discrete fractional order gradient descent law.

4 Parameter Estimation Using DFOGDL Law
Consider the initial value theorem and its corollary.

Theorem 4.1 (See [9]). Let f : Na+1 → R and m− 1 < α < m, m = 1, 2, . . . . Then,
for 0 ≤ N ≤ m− 1, the Caputo-based nabla fractional order initial value problem

C∇α
az(k) = f(k), k ∈ Na+1

∇Nz(a) = cN

has the solution

z(k) = ∇−αa f(k) +
m−1∑
N=0

(k − a)N

(N + 1)!
z(a). (4.1)
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Noticeably, the initial conditions of difference equations based on the Caputo defi-
nition take on the same form as for an integer order difference equations.

Corollary 4.2. For f : N1 → R and 0 < α < 1, then, the Caputo-based nabla
fractional order initial value problem

C∇α
0 z(k) = f(k), k ∈ N1,

z(0) = z0

has the solution
z(k) = z0 +∇−αa f(k), k ∈ N1. (4.2)

Corollary 4.2 can be used to generalize the order of the difference operator in (3.6)
to cover the fractional order difference operator of order 0 < α ≤ 1, and then we will
come up with DFOGDL,

Ŵ (k) = Ŵ (0)−
k−1∑
j=0

γ(j)C(k, j)
Φ(x(j))

m(j)
Ψ(j), (4.3)

where

C(k, j) =
1

Γ(α)

Γ(k − (j + 1) + α)

Γ(k − (j + 1) + 1)
. (4.4)

Note that if α = 1, the kernel C(k, j) = 1. That makes the classical discrete gradient
descent law a special case of FO one. This gives us an additional design parameter and
the design flexibility is increased. The fractional order parameter error vector is

W̃ (k) = W̃ (0)−
k−1∑
j=0

γ(j)C(k, j)Am(j)W̃ (j), (4.5)

since 0 < α ≤ 1 and s ≤ k − 1, 0 < C(k, j) ≤ 1. The boundedness condition of (4.5)
can be concluded by comparing (3.19) with (4.5),

0 < γ(j) <
2

C(k, j)λ(Am(j))
. (4.6)

Since C(k, j) ≤ 1,

0 < γ(j) <
2

λ(Am(j))
≤ 2

C(k, j)λ(Am(j))
. (4.7)

It is clear that the stability condition when using DFGODL has a broader range than the
classical gradient degree law.
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5 Example
Consider the discrete-time system

Y (k) = sin(4x)− 2 cos2(4x), (5.1)

= [1 − 2]

[
sin(4x)
cos2(4x)

]
, (5.2)

where x(k) ∈ [0, 2π] and k = 1, 2, . . . , 200.
For the sake of comparison, we will fix the learning rate to be γ = 1.8, and we

will simulate for α = 0.8, 0.9 and the classical integer order case α = 1. Figure 5
plots the true function and its estimate. Figure 5 shows the behavior of the parameters
convergence. The plot shows that the use of the DFOGDL improves the convergence
behavior. By comparing the DFOGDL (4.3) and the classical gradient descent law (3.5),
we note that the DFOGDL saves all the past values of the updated parameters while the
classical one is merely updating the instantaneous value.

20 40 60 80 100 120 140 160 180 200

k (time step)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

U
n
c
e
rt

a
in

ty

True Uncetainty
Estimated (α = 0.8)
Estimated (α = 0.9)
Estimated (α = 1)

Figure 5.1: Uncertainty estimation using classical gradient descent law and DFOGDL
laws (α = 0.8, 0.9, and 1).

6 Conclusion
We generalized the order of the gradient descent law, used the new law (DFOGDL) for
approximating the function and estimating the parameters on-line, and also proved the
stability of using the DFOGDL for function approximation. The use of DFOGDL to
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Figure 5.2: Parameter estimation using classical gradient descent law and DFOGDL
laws (α = 0.8, 0.9, and 1).

estimate an IO system parameter exhibits good behavior and faster parameter conver-
gence. Moreover, it increases the degree of freedom and offers superior performance
and design flexibility over the classical model. However, even with the generalization
of the difference equation, the new fractional order law may lose its ability to identify
the true parameters when the persistence of excitation of the regressor is absent.
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