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Abstract

We introduce the imaginary diamond-alpha ellipse, which unifies and extends
the left Hilger imaginary circle (forward, Delta case) and the right Hilger imagi-
nary circle (backward, nabla case), for the discrete diamond-alpha derivative with
constant step size. We then establish the Hyers–Ulam stability (HUS) of the first-
order linear complex constant coefficient discrete diamond-alpha derivative equa-
tion, proving that the imaginary diamond-alpha ellipse fails to have HUS, while
inside and outside the ellipse the equation has HUS. In particular, for each pa-
rameter value not on the diamond-alpha ellipse, we determine explicitly the best
(minimum) HUS constant in terms of the elliptical real part of the coefficient.

AMS Subject Classifications: 30E10, 39A06, 39A30, 39A45.
Keywords: Hilger circle, diamond-alpha ellipse, radial solutions, stability, first or-
der, Hyers–Ulam, backward difference operator, forward difference operator, diamond-
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1 Hilger Circles and the Imaginary Diamond-α Ellipse
Given the complex number λ ∈ C and fixed step size h > 0, key quantities in the
Hilger [6] complex plane are |1+λh| and |1−λh|. Let Ih be the (left) Hilger imaginary
circle; see also Bohner and Peterson [4, pages 51–53]. If λ ∈ Ih, that is to say if there
exist α, β ∈ R with

λ = α + iβ,

(
α +

1

h

)2

+ β2 =
1

h2
,
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then |1 + λh| = 1. If 0 < |1 + λh| < 1 then λ is inside the left Hilger circle; if
|1 + λh| = 1 then λ ∈ Ih and λ is on the circle; if |1 + λh| > 1 then λ is outside the left

Hilger imaginary circle. Now for λ ∈ C \
{
−1

h

}
, the Hilger real part of λ is defined

( [6] or [4, Definition 2.3]) by

Reh(λ) :=
|1 + λh| − 1

h
.

It follows that Reh(λ) = 0 if and only if λ ∈ Ih, with Reh(λ) < 0 for those λ ∈ C \{
−1

h

}
inside the left Hilger imaginary circle, and Reh(λ) > 0 for those λ ∈ C\

{
−1

h

}
outside the left Hilger imaginary circle.

In an analogous way, let Îh be the right Hilger imaginary circle; this was presented by
Ortigueira, Coito, and Trujillo [12] to facilitate a derivative-based discrete-time signal
processing. If λ ∈ Îh, that is to say if there exist α, β ∈ R with

λ = α + iβ,

(
α− 1

h

)2

+ β2 =
1

h2
,

then |1 − λh| = 1. If 0 < |1 − λh| < 1 then λ is inside the right Hilger circle; if
|1 − λh| = 1 then λ ∈ Îh and λ is on the circle; if |1 − λh| > 1 then λ is outside the

right Hilger imaginary circle. Now for λ ∈ C \
{

1

h

}
, the right Hilger real part of λ is

defined here by

R̂eh(λ) :=
1− |1− λh|

h
.

It follows that R̂eh(λ) = 0 if and only if λ ∈ Îh, with R̂eh(λ) < 0 for those λ ∈ C\
{

1

h

}
outside the right Hilger imaginary circle, and R̂eh(λ) > 0 for those λ ∈ C\

{
1

h

}
inside

the right Hilger imaginary circle. Notice that in either case,

lim
h→0+

Reh(λ) = Re(λ) = lim
h→0+

R̂eh(λ),

where Re(λ) is the standard real part of λ ∈ C.
Combining these two notions, we introduce the imaginary ♦α ellipse E(h,α), where

λ ∈ E(h,α) means λ ∈ C takes the form

λ =
(1− 2α)(1− cos θ) + i sin θ

h
∈ E(h,α) for any θ ∈ [0, 2π]. (1.1)

Note that E(h,1) = Ih, the (left) Hilger circle, and E(h,0) = Îh, the (right) Hilger circle,
respectively. For λ 6∈ E(h,α), we represent λ via

λ =
R(1− 2α) + [α(R2 + 1)− 1] cos θ

hR
+ i

[1 + α(R2 − 1)] sin θ

hR
∈ C (1.2)
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for θ ∈ [0, 2π], where R > 0 is a real parameter with R 6= 1 and R 6= 1− α
α

. These
are basically shifted elliptical coordinates for λ ∈ C, while they technically describe a

vertical line segment in the complex plane if R =

√
1− α
α

for α ∈ (0, 1).

Remark 1.1 (Elliptical Real Part). Let α ∈ [0, 1] and h > 0 be given. For any λ ∈ C,
λ can be expressed in terms of the imaginary ellipse (1.2). Define the elliptical real part
of λ in (1.2) to be

Re(h,α)(λ) :=


(R− 1)(1− α−Rα)

hR
: α ∈

(
0,

1

2

]
,

(R− 1)(αR + α− 1)

hR
: α ∈

(
1

2
, 1

)
.

(1.3)

For the convenience of the reader, we note the following cases.

(i) If R = 1 or R =
1− α
α

, then Re(h,α)(λ) = 0, placing λ on the imaginary ♦α
ellipse, that is λ ∈ E(h,α).

(ii) If α ∈
(

0,
1

2

)
and 0 < R < 1 or 1 <

1− α
α

< R, then Re(h,α)(λ) < 0 and λ is

outside the ellipse.

(iii) If α ∈
(

0,
1

2

)
and 1 < R <

1− α
α

, then Re(h,α)(λ) > 0 and λ is inside the

ellipse.

(iv) If α =
1

2
there is a discontinuity, and the imaginary ♦α ellipse E(h, 12) degenerates

to the straight line segment
i sin θ

h
on the imaginary axis.

(v) If α ∈
(

1

2
, 1

)
and 0 < R <

1− α
α

< 1 or R > 1, then Re(h,α)(λ) > 0 and λ is

outside the ellipse.

(vi) If α ∈
(

1

2
, 1

)
and

1− α
α

< R < 1, then Re(h,α)(λ) < 0 and λ is inside the

ellipse.

For the two extreme cases, note that

Re(h,0)(λ) =
R− 1

hR
=

1− |1− λh|
h

= R̂eh(λ), R = |1− λh|−1
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Figure 1.1: Various imaginary ♦α ellipses for α ∈ [0, 1], with α = 1 generating the left

Hilger circle, α =
1

2
the line segment, and α = 0 the right circle.

and

Re(h,1)(λ) =
R− 1

h
=
|1 + λh| − 1

h
= Reh(λ), R = |1 + λh|,

which agree with the right Hilger real part and the left Hilger real part, respectively; see
(1.2). ♥

2 Hyers–Ulam Stability for a Diamond-α Equation
Given hZ := {hn : n ∈ Z}, for any nonempty closed interval I ⊆ R, let T := hZ ∩ I .
Define

Tκ :=

{
T\{minT} : minT exists,
T : otherwise,

Tκ :=

{
T\{maxT} : maxT exists,
T : otherwise,

and set Tκκ = Tκ ∩ Tκ. In this paper we consider on T the Hyers–Ulam stability of the
first-order linear homogeneous discrete diamond-alpha derivative equation with com-
plex constant coefficient given by

♦αx(t)− λx(t) = 0, ♦αx(t) := α∆hx(t) + (1− α)∇hx(t), α ∈ [0, 1], (2.1)

where λ ∈ C and t ∈ Tκκ; here we use the forward difference operator ∆hx(t) :=
x(t+ h)− x(t)

h
and the backward difference operator ∇hx(t) :=

x(t)− x(t− h)

h
for

all t ∈ Tκκ. Note that if a function x exists on T, then ∆hx exists on Tκ and ∇hx exists
on Tκ. Thus, for the remainder of the paper, we assume that T and Tκκ are nonempty
sets in R. For more on the diamond-α derivative, see Sheng, Fadag, Henderson, and
Davis [15] or Rogers Jr. and Sheng [14] and the references therein.
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Definition 2.1. We say that (2.1) has Hyers–Ulam stability (HUS) on T if and only if
there exists a constant K > 0 with the following property. For arbitrary ε > 0, if a
function φ : T→ C satisfies

|♦αφ(t)− λφ(t)| ≤ ε for all t ∈ Tκκ,

then there exists a solution x : T → C of (2.1) such that |φ(t) − x(t)| ≤ Kε for all
t ∈ T. Such a constant K is called an HUS constant for (2.1) on T.

We start with values for which (2.1) does not have HUS, namely when λ ∈ E(h,α) is
on the ♦α imaginary ellipse introduced in (1.1).

Theorem 2.2. For any α ∈ [0, 1], if λ is on the diamond-α imaginary ellipse (1.1), that
is λ ∈ E(h,α), then (2.1) does not have Hyers–Ulam stability on hZ.

Proof. Let λ be as in (1.1). Given ε > 0, let

φ(t) :=
εte

iθt
h

1 + α(−1 + e2iθ)
.

Then |♦αφ(t)− λφ(t)| =
∣∣∣(eiθ) t−hh ε∣∣∣ = ε for all t ∈ hZ. As

x(t) = c1

(
α− 1

αeiθ

) t
h

+ c2e
iθt
h

is the general solution to ♦αx(t)−λx(t) = 0, we see that |φ(t)−x(t)| → ∞ as t→ ±∞
for any choice of the constants c1, c2 ∈ R, so that (2.1) does not have HUS on hZ.

In light of Theorem 2.2 above, we now consider cases where (2.1) does have HUS,
given α ∈ [0, 1] and λ ∈ C\E(h,α). We begin with the special cases of α = 1 and α = 0,
respectively, in the next few theorems. The α = 1 case is known from Anderson and
Onitsuka [3], while the α = 0 is new to the literature.

Theorem 2.3. [3, Theorem 2.6] Let α = 1, so that ♦α = ∆h in (2.1). If λ ∈ C\{−1/h}
with |1 + λh| 6= 1, then (2.1) has Hyers–Ulam stability with minimum HUS constant

h

|1− |1 + λh||
=

1

|Reh(λ)|
on hZ.

Theorem 2.4. Let α = 0, so that ♦α = ∇h in (2.1). If λ ∈ C\{1/h} with |1− λh| 6= 1,
then (2.1) has Hyers–Ulam stability with minimum HUS constant

h

|1− |1− λh||
=:

1∣∣∣R̂eh(λ)
∣∣∣

on hZ.
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Proof. From ∇hφ(t) = ∆hφ(t− h) =
φ(t)− φ(t− h)

h
, we have

∇hφ(t)− λφ(t) = ∆hφ(t− h)− λ (h∆hφ(t− h) + φ(t− h))

= (1− λh)∆hφ(t− h)− λφ(t− h)

= (1− λh)

(
∆hφ(t− h)− λ

1− λh
φ(t− h)

)
(2.2)

for all t ∈ Tκ. Note that 1 − λh 6= 0 since λ 6= 1/h. Therefore, using the assumption
|∇hφ(t)− λφ(t)| ≤ ε for all t ∈ Tκ, we get∣∣∣∣∆hφ(t− h)− λ

1− λh
φ(t− h)

∣∣∣∣ ≤ ε

|1− λh|
, t ∈ Tκ.

That is, ∣∣∣∣∆φ(t)− λ

1− λh
φ(t)

∣∣∣∣ ≤ ε

|1− λh|
, t ∈ Tκ; (2.3)

note that
λ

1− λh
6= −1

h
is satisfied, so the conclusion of Theorem 2.3 holds. That is,

there exists a solution x of (2.1), with λ replaced by
λ

1− λh
and ε replaced by

ε

|1− λh|
,

such that
|φ(t)− x(t)| ≤ h∣∣∣1− ∣∣∣ 1

|1−λh|

∣∣∣∣∣∣ ε

|1− λh|
=

hε

||1− λh| − 1|
.

It is straightforward to check that

∆hx(t)− λ

1− λh
x(t) = 0

is equivalent to
∇hx(t)− λx(t) = 0.

Consequently, by Theorem 2.3 with α = 0 in (2.1), since λ ∈ C\{1/h} with |1−λh| 6=
1, (2.1) has HUS with best HUS constant

h

||1− λh| − 1|
. This ends the proof.

By using Theorems 2.2, 2.3, and 2.4, we can establish the following result.

Theorem 2.5. Let α = 0, and assume from (1.1) that λ 6= (1− cos θ) + i sin θ

h
for all

θ ∈ [0, 2π], namely |1 − λh| 6= 1, and assume λ 6= 1

h
. Let ε > 0 be a given arbitrary

constant, and let φ : T→ C satisfy

|∇hφ(t)− λφ(t)− f(t)| ≤ ε, t ∈ Tκ,
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where f is a complex-valued function on T. Then there exists a solution x : T→ C of

∇hx(t)− λx(t)− f(t) = 0 (2.4)

such that

|φ(t)− x(t)| ≤ hε

|1− |1− λh||
=

ε∣∣∣R̂eh(λ)
∣∣∣

for all t ∈ T.

Proof. We assume that

|∇hφ(t)− λφ(t)− f(t)| ≤ ε

for all t ∈ Tκ. Let u(t) = (1 − λh)
−t
h ∇−1

h

[
f(t)(1− λh)

t−h
h

]
on T, where ∇−1

h is an
anti-backward difference operator. We will check that u is a solution of (2.4). Note that

f(t)(1− λh)
t−h
h = ∇h

[
u(t)(1− λh)

t
h

]
=

1

h

[
u(t)(1− λh)

t
h − u(t− h)(1− λh)

t−h
h

]
=

1

h
[(1− λh)u(t)− u(t− h)](1− λh)

t−h
h

= [∇hu(t)− λu(t)](1− λh)
t−h
h

holds for all t ∈ Tκ. From this, we see that

∇h(φ(t)− u(t))− λ(φ(t)− u(t)) = ∇hφ(t)− λφ(t)− (∇hu(t)− λu(t))

= ∇hφ(t)− λφ(t)− f(t)

for all t ∈ Tκ, and thus,

|∇h(φ(t)− u(t))− λ(φ(t)− u(t))| = |∇hφ(t)− λφ(t)− f(t)| ≤ ε

for all t ∈ Tκ, by assumption. Using Theorem 2.4, we can find a solution v : T → C
of (2.1) with α = 0 such that |(φ(t)− u(t))− v(t)| ≤ hε

|1− |1− λh||
for all t ∈ T. Let

x(t) = u(t) + v(t) for all t ∈ T. Then we see that

∇hx(t) = ∇hu(t) +∇hv(t) = λu(t) + f(t) + λv(t) = λx(t) + f(t)

holds on Tκ. This means that x is a solution of (2.4) on T. This completes the proof.
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3 HUS for the General Discrete Diamond-α Case
The Ulam type of stability was initiated by Ulam [17], joined almost immediately by
Hyers [7], and generalized by Rassias [13]. For the study of this stability for ordinary
differential equations of first order, see Miura, Miyajima, and Takahasi [9] and Jung [8];
more recently, see Onitsuka and Shoji [11]. For difference equations and the influence
of the step size on Hyers–Ulam stability, see Onitsuka [10] and [3]. On general time
scales, see András and Mészáros [1] and Shen [16]. Also recently, Brzdęk, Popa, Raşa
and Xu [5] wrote on the Ulam stability of operators.

In the remainder of the paper, we will explore HUS and HUS constants for (2.1) in
the case that α ∈ (0, 1), and by Theorem 2.2, λ ∈ C\E(h,α). That is, λ is either inside or
outside the imaginary ♦α ellipse E(h,α), but not on it. With these considerations in mind,
let λ ∈ C \ E(h,α) be denoted as in (1.2). Note that upon expansion, (2.1) is equivalent
to the second-order linear difference equation

αx(t+ h) + (1− 2α− λh)x(t) + (α− 1)x(t− h) = 0. (3.1)

If we use λ in (1.2) for R > 0 with R 6= 1 and R 6= 1− α
α

, we may denote the
characteristic zeros of this equation as

ΛR := Reiθ and Λα :=
α− 1

αReiθ
; (3.2)

then the general solution to (2.1) is

x(t) = c1(ΛR)
t
h + c2(Λα)

t
h , t ∈ T, (3.3)

for arbitrary constants c1, c2 ∈ C.

Remark 3.1. We can think of the main equation (2.1) as the eigenvalue problem for the
operator ♦α,

♦αx(t) = λx(t),

with eigenpairs (λ, x). By introducing the elliptical form of the eigenvalue λ in (1.2)
ahead of time, we have arrived at a nice radial form for the eigenfunctions via (3.2) and
(3.3). Thus, we avoid the branch cuts in the complex plane that would normally arise
by using the quadratic formula to find the zeros of the characteristic equation (3.1) and
needing to use a square root. Not realizing this earlier hampered us in [2]. ♥

Theorem 3.2. Let α ∈ (0, 1), λ ∈ C be given by (1.2) with R ∈ (0, 1) ∪ (1,∞) but

R 6= 1− α
α

, and let ΛR and Λα be given as in (3.2). Let ε > 0 be a given arbitrary
constant, and let φ : T→ C satisfy

|♦αφ(t)− λφ(t)| ≤ ε for all t ∈ Tκκ.

Then one of the following holds.
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(i) If α ∈
(

0,
1

2

)
and 1 < R <

1− α
α

, then (2.1) has Hyers–Ulam stability with an

HUS constant
hR

(R− 1)(1− α−Rα)
on T;

(ii) If α ∈
(

0,
1

2

]
and 1 ≤ 1− α

α
< R, then (2.1) has Hyers–Ulam stability with an

HUS constant
hR

(R− 1)(Rα + α− 1)
on T;

(iii) If α ∈
[

1

2
, 1

)
and 0 < R <

1− α
α
≤ 1, then (2.1) has Hyers–Ulam stability with

an HUS constant
hR

(1−R)(1− α−Rα)
on T;

(iv) If α ∈
(

1

2
, 1

)
and 0 <

1− α
α

< R < 1, then (2.1) has Hyers–Ulam stability

with an HUS constant
hR

(1−R)(Rα + α− 1)
on T.

Proof. First, we see

Λα + ΛR =
λh+ 2α− 1

α
and ΛαΛR =

α− 1

α
(3.4)

holds. Now, for arbitrary ε > 0, we assume that a function φ : T→ C satisfies

|♦αφ(t)− λφ(t)| ≤ ε

for all t ∈ Tκκ. Let ψ(t) = (αhΛα)∇hφ(t)− α(Λα − 1)φ(t) for all t ∈ Tκ. Using (3.4),
we have

∆hψ(t)−
(

ΛR − 1

h

)
ψ(t) = (αhΛα)∆h(∇hφ(t))− α(Λα − 1)∆hφ(t)

−αhΛα

(
ΛR − 1

h

)
∇hφ(t)

+α(Λα − 1)

(
ΛR − 1

h

)
φ(t)

= αΛα∆h(φ(t)− φ(t− h))− α(Λα − 1)∆hφ(t)

−α(ΛαΛR − Λα)∇hφ(t)

+
α

h
(ΛαΛR − Λα − ΛR + 1)φ(t)

= αΛα∆hφ(t)− αΛα∇hφ(t)− α(Λα − 1)∆hφ(t)

−α(ΛαΛR − Λα)∇hφ(t)− λφ(t)
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= α∆hφ(t)− αΛαΛR∇hφ(t)− λφ(t)

= ♦αφ(t)− λφ(t) (3.5)

for all t ∈ Tκκ. In summary, we have∣∣∣∣∆hψ(t)−
(

ΛR − 1

h

)
ψ(t)

∣∣∣∣ = |♦αφ(t)− λφ(t)| ≤ ε (3.6)

for all t ∈ Tκκ. The proof can be divided into four cases: (i) α ∈
(

0,
1

2

)
and 1 < R <

1− α
α

; (ii) α ∈
(

0,
1

2

]
and 1 ≤ 1− α

α
< R; (iii) α ∈

[
1

2
, 1

)
and 0 < R <

1− α
α
≤ 1;

(iv) α ∈
(

1

2
, 1

)
and 0 <

1− α
α

< R < 1.

First, we consider case (i) α ∈
(

0,
1

2

)
and 1 < R <

1− α
α

. Using Theorem 2.3

with (3.6), we conclude that there exists a solution y : Tκ → C of

∆hy(t)−
(

ΛR − 1

h

)
y(t) = 0 (3.7)

such that |ψ(t)− y(t)| ≤ hε

|1− |ΛR||
for all t ∈ Tκ. This inequality implies that∣∣∣∣∇hφ(t)− Λα − 1

hΛα

φ(t)− y(t)

hαΛα

∣∣∣∣ ≤ Rε

(1− α)(|ΛR| − 1)
=

Rε

(1− α)(R− 1)
(3.8)

for all t ∈ Tκ. Using Theorem 2.5 with (3.8), we can find a solution x : T→ C of

∇hx(t)− Λα − 1

hΛα

x(t)− y(t)

hαΛα

= 0 (3.9)

such that

|φ(t)− x(t)| ≤
hRε

(1−α)(R−1)∣∣∣1− ∣∣∣ 1
|Λα|

∣∣∣∣∣∣ =
hRε

(R− 1)(1− α−Rα)

for all t ∈ T. Now, we will show that this x is a solution of (2.1) on T. Recalling (3.5),
we have

♦αx(t)− λx(t) = ∆h [hαΛα(∇hx(t))− α(Λα − 1)x(t)]

−
(

ΛR − 1

h

)
[hαΛα∇hx(t)− α(Λα − 1)x(t)]

for all t ∈ Tκκ. Using (3.7) and (3.9), we get

♦αx(t)− λx(t) = ∆y(t)−
(

ΛR − 1

h

)
y(t) = 0
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for all t ∈ Tκκ. Thus, this x is a solution of (2.1) on T. Consequently, (2.1) has Hyers–

Ulam stability with an HUS constant
hR

(R− 1)(1− α−Rα)
on T.

Next, we consider case (ii) α ∈
(

0,
1

2

]
and 1 ≤ 1− α

α
< R. Repeating the same

argument as in the proof of case (i), we see that there exists a solution y : Tκ → C of

(3.7) such that |ψ(t)− y(t)| ≤ hε

R− 1
for all t ∈ Tκ. That is, (3.8) holds for all t ∈ Tκ.

Using Theorem 2.5 with (3.8), we can find a solution x : T→ C of (3.9) such that

|φ(t)− x(t)| ≤
hRε

(1−α)(R−1)

Rα
1−α − 1

=
hRε

(R− 1)(Rα + α− 1)

for all t ∈ T. Repeating the same argument as in the proof of case (i), x is a solution
of (2.1) on T. Consequently, (2.1) has Hyers–Ulam stability with an HUS constant

hR

(R− 1)(Rα + α− 1)
on T.

Now, we consider case (iii) α ∈
[

1

2
, 1

)
and 0 < R <

1− α
α
≤ 1. Using Theorem

2.3 with (3.6), we conclude that there exists a solution y : Tκ → C of (3.7) such that
|ψ(t)− y(t)| ≤ ε

1−R
for all t ∈ Tκ. That is,∣∣∣∣∇φ(t)− Λα − 1

hΛα

φ(t)− y(t)

hαΛα

∣∣∣∣ ≤ Rε

(1− α)(1−R)

holds for all t ∈ Tκ. Using Theorem 2.5, we can find a solution x : T → C of (3.9)
such that

|φ(t)− x(t)| ≤
hRε

(1−α)(1−R)

(1−α)−Rα
(1−α)

=
hRε

(1−R)(1− α−Rα)

for all t ∈ T. Again, x is a solution of (2.1) on T. Consequently, (2.1) has Hyers–Ulam

stability with an HUS constant
hR

(1−R)(1− α−Rα)
on T.

Finally, we consider case (iv) α ∈
(

1

2
, 1

)
and 0 <

1− α
α

< R < 1. Using these

facts and the same arguments as above, we see that (2.1) has Hyers–Ulam stability with

an HUS constant
hR

(1−R)(Rα + α− 1)
on T. This completes the proof.

From Theorems 2.2, 2.3, 2.4 and 3.2, we obtain the following result.

Theorem 3.3. For any α ∈ [0, 1] and θ ∈ [0, 2π], if

λ 6= (1− 2α)(1− cos θ) + i sin θ

h
∈ C,
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then (2.1) has Hyers–Ulam stability on T, with an HUS constant

hR

|R− 1||αR + α− 1|
=

1∣∣Re(h,α)(λ)
∣∣

where λ ∈ C \ E(h,α) is given by (1.2) for R > 0 with R 6= 1 and R 6= 1− α
α

, and

Re(h,α)(λ) is the elliptical real part of λ given by (1.3).

Proof. Let α ∈ [0, 1], λ ∈ C be given by (1.2) with R ∈ (0, 1) ∪ (1,∞). Consider the
case α = 1. From Theorem 2.3, (2.1) has HUS on T. Moreover, an HUS constant for

(2.1) is
h

|1− |1 + λh||
. When α = 1, from (1.2) we have 1 + λh = Reiθ and

hR

|R− 1||Rα + α− 1|
=

h

|R− 1|
=

h

||1 + λh| − 1|
.

Thus, the assertion is true when α = 1.
Next, we consider the case α = 0. From Theorems 2.4 and 2.5, (2.1) has HUS on

T. Moreover, an HUS constant for (2.1) is
h

|1− |1− λh||
. When α = 0, from (1.2) we

have 1− λh = (Reiθ)−1 and

hR

|R− 1||Rα + α− 1|
=

hR

|1−R|
=

h

|1− |1− λh||
.

Thus, the assertion is true when α = 0. By Theorem 3.2, we can conclude that the case
α ∈ (0, 1) is true as well, completing the proof.

Remark 3.4. Consider Theorem 3.3. If θ =
π

2
and h > 0, then λ in (1.2) becomes

λ =
1− 2α

h
+
i (1 + α (R2 − 1))

hR

for R > 0 with R 6= 1 and R 6= 1− α
α

. Since λ ∈ C \ E(h,α), by Theorem 3.3 equation
(2.1) has Hyers–Ulam stability with an HUS constant

hR

|R− 1||αR + α− 1|
=

1∣∣Re(h,α)(λ)
∣∣

on T. Consider φ : T→ C given by

φ(t) :=
−hRε(i) t−hh

(R− 1)(αR + α− 1)
+ c1

(
i(α− 1)

−αR

) t
h

+ c2(iR)
t
h ,
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which satisfies

|♦αφ(t)− λφ(t)| =
∣∣∣(i) th ε∣∣∣ = ε for all t ∈ Tκκ = hZ

for any given arbitrary constant ε > 0 and for arbitrary constants c1, c2 ∈ C. Clearly

x(t) = c1

(
i(α− 1)

−αR

) t
h

+ c2(iR)
t
h

is a solution of (2.1) for this value of θ, yielding

|φ(t)− x(t)| =

∣∣∣∣∣ −hRε(i) t−hh
(R− 1)(αR + α− 1)

∣∣∣∣∣ =
hRε

|R− 1||αR + α− 1|
, t ∈ T.

Thus
hR

|R− 1||αR + α− 1|
=

1∣∣Re(h,α)(λ)
∣∣

is the best (minimum) HUS constant in this case. ♥
Remark 3.5. This improves and extends the results in [2], where only λ ∈ R were
considered, and the best HUS constant could not be found in all cases [2, Remark 1],
since as seen above a complex-valued λ is required. ♥
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