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Abstract

In this paper we analyze a continuous time epidemic model and its discrete
counterpart, where infection spreads both horizontally and vertically. We consider
three cases: model with horizontal and imperfect vertical transmissions, model
with horizontal and perfect vertical transmissions, and model with perfect vertical
and no horizontal transmissions. Stability of different equilibrium points of both
the continuous and discrete systems in all cases are determined. It is shown that the
stability criteria are identical for continuous and discrete systems. The dynamics of
the discrete system have also shown to be independent of the step size. Numerical
computations are presented to illustrate analytical results of both the systems and
their subsystems.

AMS Subject Classifications: 37N25, 39A30, 92B05, 92D25, 92D40.
Keywords: Epidemic model, perfect and imperfect vertical transmissions, horizontal
transmission, basic reproduction number, stability.

1 Introduction
Mathematical models play significant role in understanding the dynamics of biological
phenomena. System of nonlinear differential equations are frequently used to describe
these biological models. Unfortunately, nonlinear differential equations in general can
not be solved analytically. For this reason, we go for numerical computations of the
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model system and discretization of the continuous model is essential in this process.
Here we shall explore and compare the dynamics of a continuous time epidemic model
and its subsystems with their corresponding discrete models.

Lipsitch et al. [1] have investigated the dynamics of vertically and horizontally trans-
mitted parasites of the following population model, where the state variables X and Y
represent, respectively, the densities of uninfected and infected hosts at time t:

dX

dt
=

[
bx

{
1− (X + Y )

K

}
− ux − βY

]
X + e

{
1− (X + Y )

K

}
Y , (1.1)

dY

dt
=

[
by

{
1− (X + Y )

K

}
− uy + βX

]
Y .

This model demonstrates the rate equations of a density dependent asexual host popu-
lations, where infection spreads through imperfect vertical transmission as well as hor-
izontal transmission. Horizontal transmission of infection follows mass action law with
β as the proportionality constant. Vertical transmission is imperfect because infected
hosts not only give birth of infected hosts at a rate by but also produce uninfected off-
spring at a rate e. In case of perfect vertical transmission, however, infected hosts give
birth of infected hosts only and in that case e = 0. Parasites may affect the fecundity
and morbidity rates of its host population [2,3]. It is assumed here that the death rate of
infected hosts is higher than that of susceptible hosts, i.e., uy > ux and the birth rate of
susceptible hosts is higher than that of infected hosts, i.e., bx ≥ by + e.

Standard finite difference schemes, such as Euler method, Runge–Kutta method
etc. are frequently used for numerical solutions of both ordinary and partial differen-
tial equations. But the behavior of standard finite difference schemes depend heavily
on the step size. They fail to preserve positivity of the solutions for all step size. These
conventional discretized models also show numerical instability and exhibit spurious be-
haviors like chaos which are not observed in the corresponding continuous models. In
other words, these discrete models are dynamically inconsistent. So it becomes impor-
tant to construct discrete models which will preserve all the properties of its constituent
continuous models without any restriction on the step size. Mickens in 1989 first pro-
posed such nonstandard finite difference (NSFD) scheme [4] and was shown to have
identical dynamics with its corresponding continuous model. It was also demonstrated
that the dynamics is completely independent of step size. Successful application of this
technique in subsequent time is observed in different biological models [5–12]. Here we
will discretize a continuous time population model in which parasite transmitted both
vertically and horizontally following dynamics preserving nonstandard finite difference
(NSFD) method introduced by Mickens [4]. We present the local stability analysis of
both the continuous and discrete systems and prove that the dynamic behaviour of both
systems are identical with same parameter restrictions. Moreover, we prove that the
proposed discrete models are positive for all step size and dynamically consistent.

The paper is organized as follows. We present the analysis of the continuous time
model and its subsystems in the next section. Section 3 contains the corresponding
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analysis in discrete system. In Section 4, we present extensive numerical simulations in
favour of our theoretical results. Finally, a summary is presented in Section 5.

2 Analysis of Continuous Time Models
Lipsitch et al. [1] analyzed the system (1.1) with perfect vertical transmissions (the
case e = 0) and horizontal transmission as well as the system with perfect vertical
transmission but no horizontal transmission (the case β = 0, e = 0). The general case
(when e 6= 0, β 6= 0) was analyzed numerically and its importance in the prevalence
of infection was discussed. Here we first give stability analysis of equilibrium points of
the general model (1.1) and deduce the results of subcases, whenever applicable.

The continuous system (1.1) has two boundary equilibrium pointsE0 = (0, 0),E1 =

(X̄, 0), where X̄ = K

(
1− ux

bx

)
and one interior equilibrium point E∗ = (X∗, Y ∗),

where the equilibrium densities of susceptible and infected hosts are given by

X∗ =
−B +

√
B2 − 4AC

2A
and Y ∗ =

(βK − by)X∗

by
+
K(by − uy)

by
,

with 

A =
βK

b2y
{by(bx − by − e) + βK(by + e)},

B = −K(bx − ux) +K(bx + βK + e)
(by − uy)

by

+ 2eK
(βK − by)(by − uy)

b2y
− eK(βK − by)

by
,

C = −eK
2(by − uy)uy

b2y
.

(2.1)

The trivial equilibrium E0 exists for all parameter values, but the infection free equi-
librium E1 exists if bx > ux. The coexisting equilibrium point E∗ exists if bx > ux,

by > uy, by > βK and
K

X∗ >
by − βK
by − uy

.

We have the following theorem for the stability of different equilibrium points.

Theorem 2.1. System (1.1) is locally asymptotically stable around the equilibrium point

(i) E0 if bx < ux and by < uy.

(ii) E1 if bx > ux and R0 < 1, where R0 = V0 + H0 with V0 =
by
bx

ux
uy

, H0 =

β

uy
K

(
1− ux

bx

)
and it is unstable whenever R0 > 1.
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(iii) E∗ if bx > ux, by > uy, by > βK and
K

X∗ >
by − βK
by − uy

.

Proof. Local stability of the system around an equilibrium point is performed following
linearization technique. For it, we compute the variational matrix of system (1.1) at an
arbitrary fixed point (X, Y ) as

V (X, Y ) =

(
a11 a12
a21 a22

)
, (2.2)

where 

a11 = bx

{
1− (X + Y )

K

}
− bxX

K
− ux − βY −

eY

K
,

a12 = −bxX
K
− βX + e

{
1− (X + Y )

K

}
− eY

K
,

a21 = −byY
K

+ βY ,

a22 = by

{
1− (X + Y )

K

}
− byY

K
− uy + βX .

(2.3)

At the trivial fixed point E0, the variational matrix is

V (E0) =

(
bx − ux e

0 by − uy

)
.

Corresponding eigenvalues are given by λ1 = bx − ux and λ2 = by − uy. E0 will be
locally asymptotically stable if λ1 = bx− ux < 0 and λ2 = by − uy < 0; i.e., if bx < ux
and by < uy. Thus, if the birth rates of susceptible hosts and infected hosts are less
than their respective death rates, then both populations goes to extinction and the trivial
equilibrium will be stable.

At the axial equilibrium point E1, the variational matrix is computed as

V (E1) =

−bx
(

1− ux
bx

)
−(bx + βK)

(
1− ux

bx

)
+
eux
bx

0
byux
bx
− uy + βK

(
1− ux

bx

)
 .

The corresponding eigenvalues are λ1 = −bx
(

1− ux
bx

)
and λ2 =

byux
bx
− uy +

βK

(
1− ux

bx

)
. It is to be noted that λ1 < 0 whenever E1 exists. The other eigenvalue

can be rearranged as λ2 = uy

{
by
bx

ux
uy

+
β

uy
K

(
1− ux

bx

)
− 1

}
. Thus λ2 < 0 whenever

R0 < 1, where R0 = V0 + H0. Note that V0 =

(
by
bx

)(
ux
uy

)
is the basic reproduction
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number due to vertical transmission and H0 =
β

uy
X̄ is the basic reproduction number

due to horizontal transmission.
At the interior equilibrium point E∗, the variational matrix is

V (E∗) =

(
a∗11 a∗12
a∗21 a∗22

)
, (2.4)

where 

a∗11 = −eY
∗

X∗

{
1− (X∗ + Y ∗)

K

}
− bxX

∗

K
− eY ∗

K
,

a∗12 = −bxX
∗

K
− βX∗ + e

{
1− (X∗ + Y ∗)

K

}
− eY ∗

K
,

a∗21 = −byY
∗

K
+ βY ∗,

a∗22 = −byY
∗

K
.

(2.5)

E∗ will be stable if and only if trace(V (E∗)) < 0 and det(V (E∗)) > 0. From the
existence condition of E∗, one can observe that both a∗11 and a∗22 are negative. Thus,
trace(V (E∗)) < 0. After some simple algebraic manipulation, one gets

det(V (E∗)) =
euyY

∗

X∗

(
1− uy

by

)
+
βX∗Y ∗

K
(bx − by − e) + β2X∗Y ∗ +

eβ2X∗Y ∗

by
.

Thus, whenever E∗ exists and bx ≥ by + e, we have det(V (E∗)) > 0 and E∗ becomes
locally asymptotically stable. This completes the proof.

2.1 Model with Horizontal and Perfect Vertical Transmissions
The vertical transmission is perfect if infected hosts give birth to infected offspring only.
In this case e = 0 and the system (1.1) becomes

dX

dt
= bxX

{
1− (X + Y )

K

}
− uxX − βXY , (2.6)

dY

dt
= byY

{
1− (X + Y )

K

}
− uyY + βXY .

The continuous system (2.6) has four equilibrium points, viz. EH
0 = (0, 0), EH

1 =
(X̄, 0), EH

2 = (0, Ȳ ) and interior equilibrium point E∗
H = (X∗

H , Y
∗
H), where

X̄ = K

(
1− ux

bx

)
, Ȳ = K

(
1− uy

by

)
and

X∗
H =

bxuy − byux − βK(by − uy)
β(βK + bx − by)

, Y ∗
H =

byux − bxuy + βK(bx − ux)
β(βK + bx − by)

.
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The trivial equilibrium point EH
0 always exists, EH

1 exists if bx > ux, EH
2 exists

if by > uy and the interior fixed point E∗
H exists if bx > ux, by > uy,

bxuy
by

>

ux + βK

(
1− uy

by

)
and R0 > 1, where R0 = V0 + H0 with V0 =

by
bx

ux
uy

, H0 =

β

uy
K

(
1− ux

bx

)
. The following results are known [1].

Theorem 2.2. System (2.6) is locally asymptotically stable around the equilibrium point

(i) EH
0 if bx < ux and by < uy,

(ii) EH
1 if bx > ux and R0 < 1,

(iii) EH
2 if by > uy and

bxuy
by

< ux + βK

(
1− uy

by

)
,

(iv) E∗
H if bx > ux, by > uy,

bxuy
by

> ux + βK

(
1− uy

by

)
and R0 > 1.

2.2 Model with Perfect Vertical Transmission and no Horizontal
Transmission

In this case e = 0, β = 0, and the system (1.1) reduces to

dX

dt
= bxX

{
1− (X + Y )

K

}
− uxX , (2.7)

dY

dt
= byY

{
1− (X + Y )

K

}
− uyY .

The continuous system (2.7) has three equilibrium points, viz. EV
0 = (0, 0), EV

1 =

(X̄, 0) and EV
2 = (0, Ȳ ), where X̄ = K

(
1− ux

bx

)
and Ȳ = K

(
1− uy

by

)
. The

existence conditions for EV
1 and EV

2 are bx > ux and by > uy, respectively. It is to be
noted that no interior equilibrium does exist here. The following results are known [1].

Theorem 2.3. System (2.7) is locally asymptotically stable around the equilibrium point

(i) EV
0 if bx < ux and by < uy,

(ii) EV
1 if bx > ux and

by
uy

<
bx
ux

.

(iii) The equilibrium point EV
2 is always unstable.
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3 Discrete Models

In this section, we construct three discrete models corresponding to the continuous mod-
els (1.1), (2.6) and (2.7) following nonstandard finite difference method. The objective
is to show that all the discrete models have the same dynamic properties corresponding
to its continuous counterpart and the dynamics does not depend on the step size.

The NSFD procedures are based on just two fundamental rules [13–15]:

(i) The discrete first derivative has the representation

dx

dt
→ xk+1 − ψ(h)xk

φ(h)
, h = 4t,

where φ(h), ψ(h) satisfy the conditions ψ(h) = 1 +O(h2), φ(h) = h+O(h2);

(ii) Both linear and nonlinear terms may require a nonlocal representation on the dis-
crete computational lattice.

For convenience, we first express the continuous system (1.1) as follows:

dX

dt
= bxX −

bxX
2

K
− bxXY

K
− uxX − βXY + eY − eXY

K
− eY 2

K
,

dY

dt
= byY −

byXY

K
− byY

2

K
− uyY + βXY . (3.1)

We now employ the following nonlocal approximations term wise for the system (3.1)

dX

dt
→ Xn+1 −Xn

φ1(h)
,

dY

dt
→ Yn+1 − Yn

φ2(h)
,

bxX → bxXn, byY → byYn,
bxX

2 → bxXnXn+1, byXY → byXnYn+1,
XY → Xn+1Yn, byY

2 → byYnYn+1,
uxX → uxXn+1, uyY → uyYn+1,
eY → eYn, βXY → βXnYn,

eY 2 → e
Xn+1Y

2
n

Xn

,

(3.2)

where h (> 0) is the step size and denominator functions are chosen as

φ1(h) =
by

{
1− exp

(
−βKuy

by
h
)}

βKuy
, φ2(h) = h. (3.3)

Note that φi(h), i = 1,2, are positive for all h > 0.
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By these transformations, the continuous system (3.1) is converted to

Xn+1 −Xn

φ1(h)
= bxXn −

bx
K
XnXn+1 −

bx
K
Xn+1Yn − uxXn+1 − βXn+1Yn + eYn

− e

K
Xn+1Yn −

e

K

Xn+1Y
2
n

Xn

,

Yn+1 − Yn
φ2(h)

= byYn −
by
K
XnYn+1 −

by
K
YnYn+1 − uyYn+1 + βXnYn.

(3.4)

System (3.4) can be rearranged to obtain

Xn+1 =
Xn(1 + φ1(h)bx) + φ1(h)eYn

1 + φ1(h)
(
bx
K
Xn + bx

K
Yn + ux + βYn + e

K
Yn + e

K
Y 2
n

Xn

) ,

Yn+1 =
Yn{1 + φ2(h)(by + βXn)}

1 + φ2(h)
(
by
K
Xn + by

K
Yn + uy

) , (3.5)

where φ1(h) and φ2(h) are given in (3.3).

The model (3.5) is our required discrete model corresponding to the continuous
model (1.1). It is to be noted that all terms in the right hand side of (3.5) are positive, so
solutions of the system (3.5) will remain positive if they start with positive initial value.
Therefore, the system (3.5) is said to be positive [16].

The fixed points of (3.5) can be calculated by setting Xn+1 = Xn = X and Yn+1 =
Yn = Y . One thus get the fixed points as E0 = (0, 0), E1 = (X̄, 0), where X̄ =

K

(
1− ux

bx

)
and E∗ = (X∗, Y ∗). Note that the equilibrium values and the existence

conditions remain same as in the continuous system.

The variational matrix of system (3.5) evaluated at an arbitrary fixed point (X, Y ) is
given by

J(X, Y ) =

(
a11 a12
a21 a22

)
, (3.6)
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where

a11 =
1 + φ1(h)bx

1 + φ1(h)
(
bx
K
X + bx

K
Y + ux + βY + e

K
Y + e

K
Y 2

X

)
−

{X(1 + φ1(h)bx) + φ1(h)eY }φ1(h)
(
bx
K
− e

K
Y 2

X2

)
{

1 + φ1(h)
(
bx
K
X + bx

K
Y + ux + βY + e

K
Y + e

K
Y 2

X

)}2 ,

a12 =
φ1(h)e

1 + φ1(h)
(
bx
K
X + bx

K
Y + ux + βY + e

K
Y + e

K
Y 2

X

)
−
{X(1 + φ1(h)bx) + φ1(h)eY }φ1(h)

(
bx
K

+ β + e
K

+ 2e
K
Y
X

){
1 + φ1(h)

(
bx
K
X + bx

K
Y + ux + βY + e

K
Y + e

K
Y 2

X

)}2 ,

a21 =
φ2(h)βY

1 + φ2(h)
(
by
K
X + by

K
Y + uy

) − Y {1 + φ2(h)(by + βX)}φ2(h) by
K{

1 + φ2(h)
(
by
K
X + by

K
Y + uy

)}2 ,

a22 =
1 + φ2(h)(by + βX)

1 + φ2(h)
(
by
K
X + by

K
Y + uy

) − Y {1 + φ2(h)(by + βX)}φ2(h) by
K{

1 + φ2(h)
(
by
K
X + by

K
Y + uy

)}2 .

Let λ1 and λ2 be the eigenvalues of the variational matrix (3.6) and we have the follow-
ing definition [18] in relation to the stability of the system (3.5).

Definition 3.1. A fixed point (x, y) of the system (3.5) is called stable if |λ1| < 1,
|λ2| < 1 and a source if |λ1| > 1, |λ2| > 1. It is called a saddle if |λ1| < 1, |λ2| > 1 or
|λ1| > 1, |λ2| < 1 and a nonhyperbolic fixed point if either |λ1| = 1 or |λ2| = 1.

Lemma 3.2 (See [17, 18]). Let λ1 and λ2 be the eigenvalues of the variational matrix
(3.6). Then |λ1| < 1 and |λ2| < 1 iff (i) 1−det(J) > 0, (ii) 1− trace(J) + det(J) > 0
and (iii) 0 < a11 < 1, 0 < a22 < 1.

One can then prove the following theorem.

Theorem 3.3. System (3.5) is locally asymptotically stable around the fixed point

(i) E0 if bx < ux and by < uy.

(ii) E1 if bx > ux and R0 < 1, where R0 = V0 + H0 with V0 =
by
bx

ux
uy

, H0 =

β

uy
K

(
1− ux

bx

)
and it is unstable whenever R0 > 1.

(iii) E∗ if bx > ux, by > uy, by > βK and
K

X∗ >
by − βK
by − uy

.
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Proof. At the fixed point E0, the variational matrix is given by

J(E0) =


1 + φ1(h)bx
1 + φ1(h)ux

φ1(h)e

1 + φ1(h)ux

0
1 + φ2(h)by
1 + φ2(h)uy

 .

The corresponding eigenvalues are λ1 =
1 + φ1(h)bx
1 + φ1(h)ux

and λ2 =
1 + φ2(h)by
1 + φ2(h)uy

. Clearly

|λ1| < 1 if bx < ux and |λ2| < 1 if by < uy, for h > 0. Therefore, E0 will be stable if
bx < ux and by < uy hold simultaneously. One can similarly compute the eigenvalues
corresponding to the fixed point E1 as

λ1 =
1 + φ1(h)ux
1 + φ1(h)bx

and λ2 =
1 + φ2(h)

{
by + βK

(
1− ux

bx

)}
1 + φ2(h)

(
by − byux

bx
+ uy

) .

Note that |λ1| < 1 whenever E1 exists and |λ2| < 1 whenever R0 < 1. Thus, E1 is
stable if bx > ux and R0 < 1.

At the interior fixed point E∗, the variational matrix is given by

J(E∗) =

(
a∗11 a∗12
a∗21 a∗22

)
,

where



a∗11 = 1− X∗φ1(h)

G

{
bxX

∗

K
+
eY ∗

X∗

(
1− X∗ + Y ∗

K

)
+
eY ∗

K

}
,

a∗12 =
φ1(h)X∗

G

{
e

(
1− X∗ + Y ∗

K

)
− bxX

∗

K
− βX∗ − eY ∗

K

}
,

a∗21 =
φ2(h)Y ∗βK

KH
− φ2(h)Y ∗by

KH
,

a∗22 = 1− φ2(h)byY
∗

KH
,

with

G = X∗(1 + φ1(h)bx) + φ1(h)eY ∗ and H = 1 + φ2(h)(by + βX∗).
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One can easily verify that 0 < a∗11 < 1 and 0 < a∗22 < 1. Next,

1− det(J(E∗)) =
φ1(h)X∗

KGH

{
bxX

∗ +
eY ∗K

X∗

(
1− X∗ + Y ∗

K

)
+ eY ∗

}
+
φ1(h)φ2(h)X∗Y ∗by

KGH

{
bxX

∗

Y ∗ +
eK

X∗

(
1− X∗ + Y ∗

K

)2

+ e

+
βbxX

∗2

byY ∗ +
2eβK

by

(
1− X∗ + Y ∗

K

)
+
eβX∗

by
+ bx

(
1− βX∗

by

)
+
eY ∗

X∗

(
1− βX∗

by

)
+ βX∗ + βK

(
1− X∗ + Y ∗

K

)}
+
φ2(h)byX

∗Y ∗

KGH

(
1− φ1(h)βKuy

by

)
,

1− trace(J(E∗)) + det(J(E∗)) =
φ1(h)φ2(h)X∗Y ∗by

KGH

×
{
eK

X∗

(
1− X∗ + Y ∗

K

)(
1− uy

by

)
+βX∗

(
bx
by
− 1

)
+
β2KX∗

by
+
eβY ∗

by

}
.

From the existence condition, we have
(

1− X∗ + Y ∗

K

)
=

uxX
∗ + βX∗Y ∗

bxX∗ + eY ∗ > 0.

Thus, X∗ + Y ∗ < K, i.e., X∗ < K. Also, from by > βK, we have by > βX∗ and(
1− βX∗

by

)
> 0. It is easy to observe that φ1(h) <

by
βKuy

. Thus, 1−det(J(E∗)) > 0

and 1 − trace(J(E∗)) + det(J(E∗)) > 0. Hence E∗ is locally asymptotically stable
whenever it exists. This completes the proof.

Remark 3.4. It is interesting to note that the dynamic properties of the discrete system
(3.5) are identical with its continuous counterpart (1.1). So the discrete model is dy-
namically consistent. The stability of the fixed points also does not depend on the step
size. Since all solutions of the discrete model (3.5) remain positive when starts with
positive initial value, there is no possibility of numerical instabilities and the model will
not show any spurious dynamics.

3.1 Discrete Model for Horizontal and Perfect Vertical Transmis-
sions

Here we rewrite the continuous model (2.6) as

dX

dt
= bxX −

bxX
2

K
− bxXY

K
− uxX − βXY ,
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dY

dt
= byY −

byXY

K
− byY

2

K
− uyY + βXY . (3.7)

Now we employ the same nonlocal approximations (3.2) with e = 0 term wise to have
the following system:

Xn+1 −Xn

φ1(h)
= bxXn −

bx
K
XnXn+1 −

bx
K
Xn+1Yn − uxXn+1 − βXn+1Yn,

Yn+1 − Yn
φ2(h)

= byYn −
by
K
XnYn+1 −

by
K
YnYn+1 − uyYn+1 + βXnYn. (3.8)

The required discrete model is obtained after simplification as follows:

Xn+1 =
Xn(1 + φ1(h)bx)

1 + φ1(h)
(
bx
K
Xn + bx

K
Yn + ux + βYn

) ,

Yn+1 =
Yn{1 + φ2(h)(by + βXn)}

1 + φ2(h)
(
by
K
Xn + by

K
Yn + uy

) , (3.9)

where φ1(h) and φ2(h) have the same expression as in (3.3). It is worth mentioning that
the discrete model (3.9) is positive.
One can find the same four fixed points of (3.9) as it were in the continuous case. The
stability properties of each fixed point are presented in the following theorem.

Theorem 3.5. The system (3.9) is stable around the fixed point

(i) EH
0 = (0, 0) if bx < ux and by < uy.

(ii) EH
1 = (X̄, 0) if bx > ux and R0 < 1, where

X̄ = K

(
1− ux

bx

)
and R0 =

by
bx

ux
uy

+
β

uy
X̄.

(iii) EH
2 = (0, Ȳ ) if by > uy and

bxuy
by

< ux + βK

(
1− uy

by

)
, where

Ȳ = K

(
1− uy

by

)
.

(iv) E∗
H if bx > ux, by > uy,

bxuy
by

> ux + βK

(
1− ux

bx

)
and R0 > 1.
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3.2 Discrete Model for Perfect Vertical and no Horizontal Trans-
mission

For convenience, we first express the continuous system (2.7) as

dX

dt
= bxX −

bxX
2

K
− bxXY

K
− uxX , (3.10)

dY

dt
= byY −

byXY

K
− byY

2

K
− uyY .

In this case, we consider the nonlocal approximations (3.2) with e = 0, β = 0. Note
that here φ1(h)→ h when β → 0. Then the system (3.10) reads

Xn+1 −Xn

h
= bxXn −

bx
K
XnXn+1 −

bx
K
Xn+1Yn − uxXn+1, (3.11)

Yn+1 − Yn
h

= byYn −
by
K
XnYn+1 −

by
K
YnYn+1 − uyYn+1.

On simplifications, we obtain our desired discrete model as

Xn+1 =
Xn(1 + hbx)

1 + h
(
bx
K
Xn + bx

K
Yn + ux

) , (3.12)

Yn+1 =
Yn(1 + hby)

1 + h
(
by
K
Xn + by

K
Yn + uy

) .

This system also does not contain any negative terms, so solutions remain positive for
all step size as long as initial values are positive.

As in the continuous system (2.7), the discrete system (3.12) has same three fixed
points. The stability of each fixed point can be proved similarly and has been summa-
rized in the following theorem.

Theorem 3.6. The system (3.12) is stable around the fixed point

(i) EV
0 = (0, 0) if bx < ux and by < uy.

(ii) EV
1 = (X̄, 0) if bx > ux and

by
uy

<
bx
ux

.

(iii) The fixed point EV
2 = (0, Ȳ ) is always unstable.
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4 Numerical Simulations
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Figure 4.1: Phase portraits of the continuous system (1.1) (left panel) and discrete sys-
tem (3.5) (right panel). Figs (a) and (b) show that all solutions converge to the disease
free equilibrium point E1 = (0.8333, 0) for β = 0.1. Figs (c) and (d) depict that all so-
lutions converge to the endemic equilibrium point E∗ = (0.1818, 0.4545) for β = 0.3.
Other parameters are bx = 0.6, by = 0.4, ux = 0.1, uy = 0.2, K = 1, e = 0.02 as in [1].
Step size for the discrete model is considered as h = 0.1.

In this section, we present some numerical simulations to validate the similar qualitative
behavior of our discrete models with its corresponding continuous models. For this, we
consider the same parameter set as in Lipsitch et al. [1]: bx = 0.6, by = 0.4, ux = 0.1,
uy = 0.2, K = 1, e = 0.02. We consider different initial values I1 = (0.1, 0.1),
I2 = (0.2, 0.4), I3 = (0.7, 0.6), I4 = (1, 0.4) and I5 = (1.2, 0.15) for both continuous
and discrete systems. Step size h = 0.1 is kept fixed in all simulations for the discrete
systems. If β takes the value 0.1, the parameter set satisfies conditions of Theorems
2.1(ii) and 3.3(ii). In this case, all solutions starting from different initial points converge
to the infection free point E1 = (0.8333, 0) in case of both the continuous system (1.1)
(Fig. 4.1(a)) and the discrete system (3.5) (Fig. 4.1(b)). For β = 0.3, conditions
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of Theorems 2.1(iii) and 3.3(iii) are satisfied and all solution trajectories reach to the
coexistence equilibrium point E∗ = (0.1818, 0.4545) for both the systems as shown in
Fig. 4.1(c)–4.1(d). These figures indicate that the behavior of the continuous system
(1.1) and the discrete system (3.5) are qualitatively similar.
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Figure 4.2: Phase portraits of the continuous system (2.6) (left panel) and discrete sys-
tem (3.9) (right panel). Figs. (a) and (b) show that all solutions converge to the disease
free point EH

1 = (1, 0) for β = 0.1. Figs. (c) and (d) depict that all solutions converge
to the endemic point E∗ = (0.0476, 0.5952) for β = 0.3. Figs. (e) and (f) show that
all solutions converge to the susceptible free point EH

2 = (0, 0.6) for β = 0.42. Other
parameters are bx = 0.6, by = 0.4, ux = 0.1, uy = 0.2, K = 1.2 as in [1]. Step size for
the discrete model is considered as h = 0.1.

To show dynamic consistency of the continuous system (2.6) and discrete system
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(3.9), we plotted the phase portraits of both systems in Fig. 4.2. We considered the
same initial points, the same set of parameter values as in [1] with e = 0 and the
same step size as in Fig. 4.1.The conditions of Theorem 2.2(ii) and Theorem 3.5(ii) are
satisfied when β = 0.1. In this case all solutions of both the systems converge to the
point EH

1 = (1, 0) (Figs. 4.2(a)–4.2(b)). For β = 0.3, conditions of Theorem 2.2(iv)
and Theorem 3.5(iv) are satisfied. Consequently, all solutions reach to the interior point
E∗
H = (0.0476, 0.5952) (Figs. 4.2(c)–4.2(d)). If we take β = 0.42 then all conditions of

Theorem 2.2(iii) and Theorem 3.5(iii) are satisfied. All solutions in this case converge to
the susceptible free equilibrium point EH

2 = (0, 0.6) in both cases (Figs. 4.2(e)–4.2(f)).
To observe dynamical consistency of the discrete system (3.12) with its correspond-

ing continuous system (2.7), we plotted phase diagrams of both systems in Fig. 4.3. The
same parameter set as in [1] with e = 0, β = 0 was considered and the initial points,
step size remained unchanged. Phase portraits of the continuous system (Fig. 4.3(a))
and that of the discrete system (Fig. 4.3(b)) show that all solutions reach to the infection
free point EV

1 = (1, 0), indicating the dynamic consistency of both systems.
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Figure 4.3: Phase portrait of the continuous system (2.7) (Fig. a) and that of the discrete
system (3.12) (Fig. b) indicate that all solutions converge to the infection free point
EV

1 = (1, 0) in each case. The parameters are bx = 0.6, by = 0.4, ux = 0.1, uy = 0.2
and K = 1.2 as in [1]. Step size for the discrete model is considered as h = 0.1.

5 Summary

We here considered a continuous time epidemic model, where infection spreads through
imperfect vertical transmission and horizontal transmission in a density dependent asex-
ual host population. Stability of different equilibrium points are presented with respect
to the basic reproduction number and relative birth & death rates of susceptible & in-
fected hosts. A discrete version of the continuous system is constructed following non-
local approximation technique and its dynamics has been shown to be identical with that
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of the continuous system. The proposed discrete model is shown to be positive, imply-
ing that its solutions remains positive for all future time whenever it starts with positive
initial value. The dynamics of the discrete model have been shown to be independent
of the step size. Our simulation results also show dynamic consistency of the discrete
models with its corresponding continuous model. Two submodels of the general dis-
crete model have also been shown to have the identical dynamics with their continuous
counterparts.
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