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Abstract

We derive the Helmholtz theorem for Hamiltonian systems defined on time
scales in the context of nonshifted calculus of variations which encompass the dis-
crete and continuous case. Precisely, we give a theorem characterizing first order
equation on time scales, admitting a Hamiltonian formulation which is defined
with nonshifted calculus of variation. Moreover, in the affirmative case, we give
the associated Hamiltonian.
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Keywords: Time scales, calculus of variations, embedding, least-action principle, Hamil-
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1 Introduction
A classical problem in Analysis is the well-known Helmholtz’s inverse problem of the
calculus of variations: find a necessary and sufficient condition under which a (sys-
tem of) differential equation(s) can be written as an Euler–Lagrange or a Hamiltonian
equation and, in the affirmative case, find all the possible Lagrangian or Hamiltonian
formulations. This condition is usually called Helmholtz condition.

The Lagrangian Helmholtz problem has been studied and solved by J. Douglas [13],
A. Mayer [20] and A. Hirsch [15, 16]. The Hamiltonian Helmholtz problem has been
studied and solved up to our knowledge by R. Santilli in his book [22].

Generalization of this problem in the discrete calculus of variations framework has
been done in [9] and [17] in the discrete Lagrangian case. For the Hamiltonian case it
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has been done for the discrete calculus of variations in [2] using the framework of [18]
and in [12] using a discrete embedding procedure.

In this paper we generalize the Helmholtz theorem for Hamiltonian systems in the
case of time scale calculus using the work of [11] and [8] in the context of nonshifted
calculus. We recover then the discrete case [12] when the time scale is a set of discrete
points and the classical case [22] when the time scale is a continuous interval.

The paper is organized as follows: In Section 2, we recall some results on time scale
calculus. In Section 3, we give the definition of time scale embedding. In Section 4,
we give a brief survey of the classical Helmholtz Hamiltonian problem. In Section 5,
we introduce the definition of a time scale Hamiltonian in the context of nonshifted
calculus of variations and then we enunciate and prove the main result of this paper, the
time scale Hamiltonian Helmholtz theorem. Finally, in Section 6, we conclude and give
some prospects.

2 Reminder about the Time Scale Calculus
We refer to [1, 5, 6] and references therein for more details on time scale calculus. We
consider T which denotes a bounded time scale with a = min(T), b = max(T) and
card(T) ≥ 3.

Definition 2.1. The backward and forward jump operators ρ, σ : T −→ T are respec-
tively defined by:

∀t ∈ T, ρ(t) = sup{s ∈ T, s < t} and σ(t) = inf{s ∈ T, s > t},

where we put sup ∅ = a and inf ∅ = b.

Definition 2.2. A point t ∈ T is said to be left-dense (resp. left-scattered, right-dense
and right-scattered) if ρ(t) = t (resp. ρ(t) < t, σ(t) = t and σ(t) > t).

Let LD (resp. LS, RD and RS) denote the set of all left-dense (resp. left-scattered,
right-dense and right-scattered) points of T.

Definition 2.3. The graininess (resp. backward graininess) function µ : T −→ R+

(resp. ν : T −→ R+) is defined by µ(t) = σ(t)− t (resp. ν(t) = t−ρ(t)) for any t ∈ T.

We set Tκ = T\]ρ(b), b], Tκ = T\[a, σ(a)[ and Tκκ = Tκ ∩ Tκ.
Remark 2.4. Note that Tκκ 6= ∅ since card(T) ≥ 3.

Let us recall the usual definitions of ∆- and ∇-differentiability.

Definition 2.5. A function u : T −→ Rn, where n ∈ N, is said to be ∆-differentiable
at t ∈ Tκ (resp. ∇-differentiable at t ∈ Tκ) if the following limit exists in Rn:

lim
s→t
s 6=σ(t)

u(σ(t))− u(s)

σ(t)− s

resp. lim
s→t
s 6=ρ(t)

u(s)− u(ρ(t))

s− ρ(t)

 . (2.1)
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In such a case, this limit is denoted by u∆(t) (resp. u∇(t)).

Let us recall the following results on ∆-differentiability.

Theorem 2.6 (See [5, Theorem 1.16 p. 5]). Let u : T −→ Rn and t ∈ Tκ. The following
properties hold:

1. if u is ∆-differentiable at t, then u is continuous at t.

2. if t ∈ RS and if u is continuous at t, then u is ∆-differentiable at t with:

u∆(t) =
u(σ(t))− u(t)

µ(t)
. (2.2)

3. if t ∈ RD, then u is ∆-differentiable at t if and only if the following limit exists in
Rn:

lim
s→t
s 6=t

u(t)− u(s)

t− s
. (2.3)

In such a case, this limit is equal to u∆(t).

Proposition 2.7 (See [5, Corollary 1.68 p. 25]). Let u : T −→ Rn. Then, u is
∆-differentiable on Tκ with u∆ = 0 if and only if there exists c ∈ Rn such that u(t) = c
for every t ∈ T.

The analogous results for∇-differentiability are also valid.

Definition 2.8. A function u is said to be rd-continuous (resp. ld-continuous) on T if
it is continuous at every t ∈ RD (resp. t ∈ LD) and if it admits a left-sided (resp.
right-sided) limit at every t ∈ LD (resp. t ∈ RD).

We respectively denote byC0
rd(T) andC1,∆

rd (T) the functional spaces of rd-continuous
functions on T and of ∆-differentiable functions on Tκ with rd-continuous ∆-derivative.
We also respectively denote byC0

ld(T) andC1,∇
ld (T) the functional spaces of ld-continuous

functions on T and of∇-differentiable functions on Tκ with ld-continuous∇-derivative.
Let us recall the following results on the continuity of the forward and backward

jump operators.

Proposition 2.9 (See [8, Lemma 1 p. 548]). Let t ∈ Tκ. The following properties are
equivalent:

1. σ is continuous at t;

2. σ ◦ ρ(t) = t;

3. t /∈ RS ∩ LD.
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Also, let t ∈ Tκ. The following properties are equivalent:

1. ρ is continuous at t;

2. ρ ◦ σ(t) = t;

3. t /∈ LS ∩ RD.

Proposition 2.10 (See [8, Corollary 1 p. 552]). Let u : T −→ Rn. If the following
properties are satisfied:

• σ is ∇-differentiable on Tκ;

• u is ∆-differentiable on Tκ;

then u ◦ σ is ∇-differentiable at every t ∈ Tκκ with

(u ◦ σ)∇(t) = σ∇(t)u∆(t). (2.4)

Also, if the following properties are satisfied:

• ρ is ∆-differentiable on Tκ;

• u is ∇-differentiable on Tκ;

then u ◦ ρ is ∆-differentiable at every t ∈ Tκκ with

(u ◦ ρ)∆(t) = ρ∆(t)u∇(t). (2.5)

Let us now derive a result about ∆-differentiability of ρ and the ∇-differentiability
of σ.

Proposition 2.11. If σ is ∇-differentiable on Tκ and ρ is ∆-differentiable on Tκ, then
we have ρ∆(t)σ∇(t) = 1 for all t ∈ Tκκ.

Proof. If σ is∇-differentiable on Tκ and ρ is ∆-differentiable on Tκ, then the following
limits then exist and are finite

lim
s→t
s 6=σ(t)

ρ(σ(t))− ρ(s)

σ(t)− s
and lim

s→t
s 6=ρ(t)

σ(s)− σ(ρ(t))

s− ρ(t)
.

and also σ is continuous on Tκ and ρ is continuous on Tκ (Theorem (2.6)). By the
continuity of σ and ρ (Proposition (2.9)) we have only two cases to consider, t ∈ LS∩RS

or t ∈ LD ∩ RD. If t ∈ LS ∩ RS, then σ∇(t) =
µ(t)

ν(t)
and ρ∆(t) =

ν(t)

µ(t)
and then we

have ρ∆(t)σ∇(t) = 1. If t ∈ LD ∩ RD, then σ∇(t) = 1 and ρ∆(t) = 1 and then we
have also the result.
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Let us denote by
∫

∆τ the Cauchy ∆-integral defined in [5, p. 26] with the follow-

ing result.

Theorem 2.12 (See [5, Theorem 1.74 p. 27]). For every u ∈ C0
rd(Tκ), there exist a

unique ∆-antiderivative U of u in sense of U∆ = u on Tκ vanishing at t = a. In this
case the ∆-integral is defined by

U(t) =

∫ t

a

u(τ)∆τ

for every t ∈ T.

Proposition 2.13. The ∆-integral has the following properties:

(i) if c, d ∈ T and f and g are ∆-differentiable, then the following formula of inte-
gration by parts hold:∫ d

c

f(t)g∆(t)∆t = (fg)(t)|t=dt=c −
∫ d

c

f∆(t)g(σ(t))∆t.

(ii) if c, d ∈ T, f is ∇-differentiable and g and ρ are ∆-differentiable, then the fol-
lowing formula of integration by parts hold:∫ d

c

f(t)g∆(t)∆t = f(ρ(t))g(t)|t=dt=c −
∫ d

c

ρ∆(t)f∇(t)g(t)∆t.

The first integration by parts formula (i) is well known in the literature of the time
scale calculus. The second (ii) is obtained by ∆-integration of the Leibniz formula [8,
Proposition 7 p. 552].

Let us now remind some definitions of variational calculus.

Definition 2.14. Let L be a Lagrangian i.e., a continuous map of class C1 in its two last
variables:

L : Tκ × Rn × Rn −→ R
(t, x, v) 7−→ L(t, x, v)

and let L be the following Lagrangian functional:

L : C1,∆
rd (T) −→ R

u 7−→
∫ b

a

L(τ, u(τ), u∆(τ))∆τ.

We define C1,∆
rd,0(T) = {w ∈ C1,∆

rd (T), w(a) = w(b) = 0} to be the set of variations
of L. A function u ∈ C1,∆

rd (T) is said to be a critical point of L if DL(u)(w) = 0 for
every w ∈ C1,∆

rd,0(T) where D denotes the Fréchet derivative.
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We remind what we call a strong form of the well known Dubois–Reymond lemma
on time scales (see [4, Lemma 4.1]).

Lemma 2.15 (Dubois–Reymond Strong Form). Let q ∈ C0
rd(Tκ,Rn). Then the equality∫ b

a

q(τ) · w∆(τ)∆τ = 0

holds for every w ∈ C1,∆
rd,0(T,Rn) if and only if there exist c ∈ Rn such that q(t) = c for

all t ∈ Tκ.

The classical form of the Dubois–Reymond lemma on time scales has already been
proved in the context of the shifted ∇-calculus of variations (see [19, Proposition 9]).
We give the result for the nonshifted calculus of variations and we call it the weak form
of the Dubois–Reymond lemma.

Lemma 2.16 (Dubois–Reymond Weak Form). Let q ∈ C0
rd(Tκ,Rn). Then the equality∫ b

a

q(τ) · w(τ)∆τ = 0

holds for every w ∈ C0
rd(Tκ,Rn) such that w(a) = w(b) = 0 if and only if q(t) = 0 for

all t ∈ Tκ.

Proof. The sufficient condition is obvious. For the necessary one: Let r(τ) = (τ −
a)2(τ − b)2 which is clearly positive for all τ ∈ T\{a, b} and vanish at τ = a and τ = b.
Let w(τ) = r(τ)q(τ). We have

0 =

∫ b

a

q(τ) · w(τ)∆τ =

∫ b

a

‖q(τ)‖2r(τ)∆τ.

As ‖q(τ)‖2r(τ) ≥ 0 for all t ∈ Tκ then necessarily we have q(τ) = 0 for all t ∈ Tκ.

3 Time Scale Embeddings
We remind the time scale embedding as defined in [11] to which we refer for more
details. We denote by C([a, b];R) the set of continuous functions x : [a, b]→ R. A time
scale embedding is given by specifying:

• A mapping ι : C([a, b],R)→ C0
rd(T,R);

• An operator δ : C1([a, b],R)→ C1,∆
rd (Tκ,R), called a generalized derivative;

• An operator J : C([a, b],R)→ C0
rd(T,R), called a generalized integral operator.
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We fix the following embedding.

Definition 3.1 (Time Scale ∆-embedding). The mapping ι is obtained by restriction of
functions to T. The operator δ is chosen to be the ∆-derivative, and the operator J is
given by the ∆-integral as follows:

δu(t) := u∆(t) , Ju(t) :=

∫ σ(t)

a

u(s)∆s .

Definition 3.2 (Time Scale ∆-embedding of Differential Equations). The ∆-differential
embedding of an ordinary differential equation

dx(t)

dt
= f(t, x(t))

for x ∈ C1([a, b],R) and f ∈ C(R× C1([a, b],R),R), is given by

x∆(t) = f(t, x(t))

for x ∈ C1,∆
rd (Tκ,R) and f ∈ C0

rd(T× C1,∆
rd (Tκ,R),R).

Definition 3.3 (Time Scale ∆-embedding of Integral Equations). The ∆-integral em-
bedding of an integral equation

x(t) = x(a) +

∫ t

a

f(s, x(s))ds

for x ∈ C1([a, b],R) and f ∈ C(R× C1([a, b],R),R), is given by

x(t) = x(a) +

∫ σ(t)

a

f(s, x(s))∆s

for x ∈ C1,∆
rd (Tκ,R) and f ∈ C0

rd(T× C1,∆
rd (Tκ,R),R).

Definition 3.4 (Time Scale ∆-embedding of Integral Functionals). Let L : [a, b]×R2 →
R be a continuous function and L the functional defined by

L(x) =

∫ t

a

L

(
s, x(s),

dx(s)

dt

)
ds.

The time scale ∆-embedding L∆ of L is given by

L∆(x) =

∫ σ(t)

a

L
(
s, x(s), x∆(s)

)
∆s.
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4 Classical Helmholtz Hamiltonian Problem: A Brief
Survey

This section is based on the book of [22] to which we refer for more details.

4.1 Generalities and Notations
We work on R2d, d ≥ 1, d ∈ N. We denote by T the transpose. The symplectic scalar
product < ·, · >J is defined for all X, Y ∈ R2d by

< X, Y >J =< X, J · Y >

where < ·, · > denote the usual scalar product and J =

(
0 Id
−Id 0

)
with Id the identity

matrix on Rd.

Definition 4.1. We define the L2 symplectic scalar product induced by< ·, · >J defined
for f, g ∈ C1([a, b],R2d) by

< f, g >L2,J =

∫ b

a

< f(t), g(t) >J dt .

Definition 4.2. Let A : C0([a, b],R2d) −→ C0([a, b],R2d). We define the adjoint A∗J of
A with respect to < ·, · >L2,J by

< A · f, g >L2,J=< A∗J · g, f >L2,J .

Definition 4.3 (Classical Hamiltonian). A classical Hamiltonian is a function H : Rd×
Rd → R such that for (q, p) ∈ C1([a, b],Rd)×C1([a, b],Rd) we have the time evolution
of (q, p) given by the classical Hamilton’s equations

dq

dt
=
∂H(q, p)

∂p
dp

dt
= −∂H(q, p)

∂q

Remark 4.4. We say that X =


∂H(q, p)

∂p

−∂H(q, p)

∂q

 is Hamiltonian.

An important property of Hamiltonian systems is that there solutions correspond
to critical points of a given functional. We have the following theorem (see, e.g., [3,
Theorem 45.C]):



Helmholtz Theorem for Hamiltonian Systems on Time Scales 129

Theorem 4.5. The points (q, p) ∈ C1([a, b],Rd)× C1([a, b],Rd) satisfying Hamilton’s
equations are critical points of the functional

LH : C1([a, b],Rd)× C1([a, b],Rd) −→ R

(q, p) 7−→ LH(q, p) =

∫ b

a
LH(q(t), p(t), q̇(t), ṗ(t))dt

where LH : Rn × Rn × Rn × Rn −→ R is the Lagrangian defined by

LH(x, y, v, w) =< y, v > −H(x, y).

4.2 Classical Helmholtz Hamiltonian Theorem

We consider the differential equations associate to a vector field X =

(
Xq

Xp

)
,

d

dt

(
q
p

)
=

(
Xq(q, p)
Xp(q, p)

)
.

It defines a natural operator which is written as

OX(q, p) =

dq

dt
−Xq(q, p)

dp

dt
−Xp(q, p)

 .

In this case we have the Hamiltonian Helmholtz conditions (see [22, Theorem 2.7.3, p.
88]):

Proposition 4.6 (Classical Hamiltonian Helmholtz Conditions). The operator OX has
its Fréchet derivative self-adjoint at (q, p) if and only if

∂Xq(q, p)

∂q
+

(
∂Xp(q, p)

∂p

)T
= 0

∂Xq(q, p)

∂p
and

∂Xp(q, p)

∂q
are symmetric.

We have then the following result.

Theorem 4.7 (See [22, Theorem 3.12.1-2, p. 176–177]). The vector field X is Hamilto-
nian if and only if the operator OX has his Fréchet derivative self-adjoint with respect
to the symplectic scalar product. In this case the Hamiltonian associate to X is given
by

H(q, p) =

∫ 1

0

[p ·Xq(λq, λp)− q ·Xp(λq, λp)] dλ.

Remark 4.8. The Classical Hamiltonian Helmholtz conditions are also the conditions to
which the differential form associate to the vector field X with respect to the symplectic
scalar product is closed.
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5 Time Scale Helmholtz Hamiltonian Problem

5.1 Generalities and Notations
Definition 5.1. We define the L2 −∆ scalar product defined for f, g ∈ C0

rd(T,Rd) by

< f, g >L2,∆=

∫ b

a

< f(t), g(t) > ∆t

and also the L2 −∆ symplectic scalar product defined for f, g ∈ C0
rd(T,R2d) by

< f, g >L2,∆,J=< f, J · g >L2,∆ .

Definition 5.2. Let A : C0
rd(T,R2d) −→ C0

rd(T,R2d). We define the adjoint A∗J of A
with respect to < ·, · >L2,∆,J by

< A · f, g >L2,∆,J=< A∗J · g, f >L2,∆,J .

Let C1,∆×∇(T) denote the set C1,∆
rd (T)× C1,∇

ld (T) and

C1,∆×∇
0 (T) = {w ∈ C1,∆×∇(T), w(a) = w(b) = 0}.

5.2 Time Scale Hamiltonian
We consider the ∆-embedding of LH , LH,∆ defined by

LH,∆(q, p) =

∫ b

a

LH(q(t), p(t), q∆(t), p∆(t))∆t

for all (q, p) ∈ C1,∆×∇(T,Rd).
We assume that ρ is ∆-differentiable on Tκ and σ is ∇-differentiable on Tκ.

Definition 5.3 (Time Scale Hamiltonian). A time scale Hamiltonian is a function H :
Rd×Rd → R such that for (q, p) ∈ C1,∆×∇(T,Rd) we have the time evolution of (q, p)
given by the time scale Hamilton’s equations under the derivative form

(?1)


q∆(t) =

∂H(q(t), p(t)

∂p

ρ∆(t)p∇(t) = −∂H(q(t), p(t))

∂q

for all t ∈ Tκκ

or under the integral form

(?2)


q(σ(t)) =

∫ σ(t)

a

∂H

∂p
(q(τ), p(τ))∆τ + Cq

p(t) =

∫ σ(t)

a

−∂H
∂q

(q(τ), p(τ))∆τ + Cp

for all t ∈ Tκ,

where Cq and Cp are constants. Moreover, the derivative form and the integral form are
equivalent.
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Theorem 5.4. The critical points (q, p) ∈ C1,∆×∇(T,Rd) of the functional LH,∆ satisfy
the time scale Hamilton’s equations (?1) or equivalently (?2).

Proof. Let (u, v) ∈ C1,∆×∇
0 (T,Rd). The Fréchet derivative of LH,∆ at (q, p) along

(u, v) is given by

DLH,∆(q, p)(u, v) =

∫ b

a

[
p(t) · u∆(t) + v(t) · q∆(t)−DH (q(t), p(t)) (u(t), v(t))

]
∆t

where the Fréchet derivative of H at (q, p) along (u, v) is given by

DH(q, p)(u, v) =
∂H(q, p)

∂q
· u+

∂H(q, p)

∂p
· v .

First we prove the critical points satisfy the Hamilton’s equations under the derivative form.
Using the integration by parts formula (ii) of Proposition (2.13) and using the fact that u vanish
at t = a and t = b we obtain

DLH,∆(q, p)(u, v)

=

∫ b

a

[
−ρ∆(t)p∇(t) · u(t) + v(t) · q∆(t)−DH (q(t), p(t)) (u(t), v(t))

]
∆t.

Using the expression DH(q, p)(u, v) we obtain

DLH,∆(q, p)(u, v)

=

∫ b

a

[
−u(t) ·

(
ρ∆(t)p∇(t) +

∂H(q(t), p(t))

∂q

)
+ v(t) ·

(
q∆(t)− ∂H(q(t), p(t)

∂p

)]
∆t.

By definition, if (q, p) is a critical point of DLH,∆ then we have

DLH,∆(q, p)(u, v) = 0

and then using the weak form of the Dubois–Reymond Lemma we obtain the time scale Hamil-
ton’s equations under the derivative form.

Second using the same strategy with the integration by parts formula (i) of Proposition
(2.13) and using the strong form of the Dubois–Reymond Lemma we obtain the time scale
Hamilton’s equations under the integral form.

Equivalence between (?1) and (?2) is due to the ∆-differentiability of ρ on Tκ and the
∇-differentiability of σ on Tκ. Indeed, using Proposition (2.11) we obtain for all t ∈ Tκκ

(?1)⇐⇒


σ∇(t)q∆(t) = σ∇(t)

∂H(q(t), p(t))

∂p

p∇(t) = −σ∇(t)
∂H(q(t), p(t))

∂q

.

Then, using Proposition (2.10) and the property of the ∆-antiderivative given in the
Theorem (2.12), we obtain for all t ∈ Tκκ

σ∇(t)q∆(t) = σ∇(t)
∂H(q(t), p(t))

∂p

p∇(t) = −σ∇(t)
∂H(q(t), p(t))

∂q

⇐⇒


[q(σ(t))]

∇
=

[∫ σ(t)

a

∂H(q(τ), p(τ))

∂p
∆τ

]∇

p∇(t) =

[∫ σ(t)

a

−∂H(q(τ), p(τ))

∂q
∆τ

]∇
Using the∇ version of Proposition (2.7) we obtain (?1)⇐⇒ (?2).
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5.3 Time Scale Helmholtz Hamiltonian Theorem

We consider the general system of time scale equations associate toX =

(
Xq

Xp

)
defined

as

(?)

{
q∆(t) = Xq(q(t), p(t))

ρ∆(t)p∇(t) = Xp(q(t), p(t))

for all t ∈ Tκκ. It defines an operator OT
X as follows:

OT
X : C1,∆×∇(T,R2d) −→ C(Tκκ,R2d)

(q, p) 7−→
(

q∆ −Xq(q, p)
ρ∆p∇ −Xp(q, p)

)
.

A straightforward computation leads to the following.

Proposition 5.5. Let (u, v) ∈ C1,∆×∇
0 (T,Rd). The Fréchet derivative DOT

X(q, p) is
given by

DOT
X(q, p)(u, v) =

 u∆ − ∂Xq

∂q
· u− ∂Xq

∂p
· v

ρ∆v∇ − ∂Xp

∂q
· u− ∂Xp

∂p
· v


and its adjoint DOT,∗

X,J(q, p) with respect to the L2 − ∆ symplectic scalar product is
given by

DOT,∗
X,J(q, p)(u, v) =

 u∆ +

(
∂Xp

∂p

)T
· u−

(
∂Xq

∂p

)T
· v

ρ∆v∇ −
(
∂Xp

∂q

)T
· u+

(
∂Xq

∂q

)T
· v

 .

By identification we obtain the next result.

Lemma 5.6 (Time Scale Hamiltonian Helmholtz Conditions). The operator OT
X has its

Fréchet derivative self-adjoint at (q, p) ∈ C1,∆×∇(T,Rd) if and only if the following
conditions are satisfied over Tκκ:

∂Xq(q, p)

∂q
+

(
∂Xp(q, p)

∂p

)T
= 0

∂Xq(q, p)

∂p
and

∂Xp(q, p)

∂q
are symmetric.

Now we can state the main result of this paper:
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Theorem 5.7 (Helmholtz Theorem for Hamiltonian Systems on Time Scales). The vec-
tor field X is a time scale Hamiltonian if and only if the operator OT

X associated has his
Fréchet derivative self-adjoint with respect to the L2 −∆ symplectic scalar product. In
this case the Hamiltonian associate to X is given by

H(q, p) =

∫ 1

0

[p ·Xq(λq, λp)− q ·Xp(λq, λp)] dλ.

Proof. Let (u, v) ∈ C1,∆×∇
0 (T,Rd). The Fréchet derivative of LH,∆ at (q, p) along

(u, v) is given by

DLH,∆(q, p)(u, v) =

∫ b

a

[
p(t) · u∆(t) + v(t) · q∆(t)−DH (q(t), p(t)) (u(t), v(t))

]
∆t.

The time scale Hamiltonian Helmholtz conditions implies that the Fréchet derivative of H at
(q, p) along (u, v) is given by

DH(q, p)(u, v) =

∫ 1

0

∂

∂λ
(v ·Xq(q, p)− u ·Xp(q, p)) dλ,

which leads to
DH(q, p)(u, v) = v ·Xq(q, p)− u ·Xp(q, p).

By definition, if (q, p) is a critical point of DLH,∆ then we have

DLH,∆(q, p)(u, v) = 0

and then using integration by parts formula (ii) with the weak form of the Dubois–Reymond
lemma concludes the proof.

6 Conclusion and Prospects
We proved a result on first order time scale equations which allows us to find the exis-
tence of a Hamiltonian structure associate and in the affirmative case to give the Hamil-
tonian. Our result recover both the discrete and classical case but it allows the mixing
of both of them as the time scale calculus was created with such motivation [14]. The
Hamiltonian Helmholtz problem was easier to prove as contrary to the Lagrangian case.
Indeed, there is no mixing of ∆ and∇ derivative such as ∆ ◦∇ or∇◦∆ which happen
in the discrete case [9].

The further extension of the Hamiltonian Helmholtz problem is to consider the

derivative as combinations of ∆ and ∇ such that � =
∆ +∇

2
which is the diamond

integral for which motivations and definitions can be found in [21], [10] and references
therein.

Another further extension of this result concern the stochastic calculus and more
precisely the stochastic calculus on time scales defined in [23] and [7]. The work is to
define a natural notion of stochastic Hamiltonian on time scales and then to give the
stochastic version of Theorem (5.7). This extension is a work in progress and will be
the subject of a future paper.
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