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Abstract

In this article, we deal with the existence of mild solutions for a class of frac-
tional integro-differential equations with state-dependent delay. Our results are
based on the technique of measures of noncompactness and Darbo’s fixed point
theorem. An example is provided to illustrate the main result.
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1 Introduction
Fractional differential equations have become an important object of investigation in
recent years stimulated by their numerous applications to problems arising in physics,
mechanics and other fields (see [14,15,24,30,34–36]). The theory of differential equa-
tions of fractional order has recently received a lot of attention and now constitutes a
significant branch of nonlinear analysis. Numerous research papers and monographs
have appeared devoted to fractional differential equations, for example see [1, 2, 6, 10,
13, 27, 28, 37].

On the other hand, functional differential equations with state-dependent delay ap-
pears frequently in applications as models of equations. Investigations of these classes
of delay equations essentially differ from once of equations with constant or time-
dependent delay. For these reasons the theory of differential equations with state-
dependent delay has drawn the attention of researchers in the recent years, see for
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instance [3, 4, 17–19, 21–23, 29, 32]. Recently, Carvalho dos Santos et al [8] studied
the existence of solutions for fractional neutral functional integro-differential equations
with state-dependent delay. Kavitha et al [26] established the existence of mild solutions
for a class of neutral functional fractional differential equations with state-dependent
delay. In [9, 11], the authors provide sufficient conditions for the existence of solutions
of fractional functional differential equation with state-dependent delay. Very recently,
Benchohra et al [7] investigated the existence of solutions on a compact interval for
fractional integro-differential equations with state-dependent delay by using standard
fixed point theorems.

Motivated by the previous literature, the purpose of this article is to establish the
existence of mild solutions for fractional functional integro-differential equation with
state-dependent delay of the form

Dq
tx(t) = Ax(t) +

∫ t

0

a(t, s)f(s, xρ(s,xs), x(s))ds, t ∈ J = [0, T ],

x(t) = φ(t), t ∈ (−∞, 0],

(1.1)

where Dq
t is the Caputo fractional derivative of order 0 < q < 1, A is a generator

of an analytic semigroup {S(t)}t≥0 of uniformly bounded linear operators on X , f :
J × B × X −→ X and ρ : J × B → (−∞, T ] are appropriated functions. a : D →
R (D = {(t, s) ∈ J ×J : t ≥ s}), φ ∈ B where B is called phase space to be defined in
Section 2. For any continuous function x defined on (−∞, T ] and any t ∈ J, we denote
by xt the element of B defined by

xt(θ) = x(t+ θ), θ ∈ (−∞, 0].

Here xt represents the history of the state up to the present time t.

2 Preliminaries
Let (X, ‖·‖) be a real Banach space, C = C(J,X) the space of allX-valued continuous
functions on J , L(X) the Banach space of all linear and bounded operators on X ,
L1(J,X) the space of X-valued Bochner integrable functions on J with the norm

‖y‖L1 =

∫ T

0

‖y(t)‖dt,

and L∞(J,R) the Banach space of essentially bounded functions, normed by

‖y‖L∞ = inf{d > 0 : |y(t)| ≤ d, a.e. t ∈ J}.

We need some basic definitions of the fractional calculus theory which are used in this
paper.
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Definition 2.1. Let α > 0 and f : R+ → X be in L1(R+, X). Then the Riemann–
Liouville integral is given by:

Iαt f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds,

where Γ(·) is the Euler gamma function.

For more details on the Riemann–Liouville fractional derivative, we refer the reader
to [12].

Definition 2.2 (See [33]). The Caputo derivative of order α for f : [0,+∞) → X can
be written as

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−nds = In−αf (n)(t), t > 0, n− 1 ≤ α < n.

If 0 < α ≤ 1, then

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f (1)(s)

(t− s)α
ds.

Obviously, the Caputo derivative of a constant is equal to zero.

Definition 2.3. A function f : J ×B ×X −→ X is said to be a Carathéodory function
if it satisfies

(i) for each t ∈ J the function f(t, ·, ·) : B ×X −→ X is continuous;

(ii) for each (v, w) ∈ B ×X the function f(·, v, w) : J → X is measurable.

Next we give the concept of a measure of noncompactness [5].

Definition 2.4. Let B be a bounded subset of a seminormed linear space Y. Kura-
towski’s measure of noncompactness of B is defined as

α(B) = inf{d > 0 : B has a finite cover by sets of diameter ≤ d}.

We note that this measure of noncompactness satisfies interesting regularity proper-
ties (for more information, we refer to [5]).

Lemma 2.5. 1. If A ⊆ B, then α(A) ≤ α(B),

2. α(A) = α(A), where A denotes the closure of A,

3. α(A) = 0⇔ A is compact (A is relatively compact),

4. α(λA) = |λ|A, with λ ∈ R,

5. α(A ∪B) = max{α(A), α(B)},
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6. α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B},

7. α(A+ a) = α(A) for any a ∈ Y,

8. α(convA) = α(A), where convA is the closed convex hull of A.

For H ⊂ C(J,X), we define∫ t

0

H(s)ds =

{∫ t

0

u(s)ds : u ∈ H
}

for t ∈ J,

where H(s) = {u(s) ∈ X : u ∈ H}.

Lemma 2.6 (See [5]). If H ⊂ C(J,X) is a bounded, equicontinuous set, then

α(H) = sup
t∈J

α(H(t)).

Lemma 2.7 (See [20]). If {un}∞n=1 ⊂ L1(J,X) and there exists m ∈ L1(J,R+) such
that ‖un(t)‖ ≤ m(t), a.e. t ∈ J , then α({un(t)}∞n=1) is integrable and

α

({∫ t

0

un(s)ds

}∞
n=1

)
≤ 2

∫ t

0

α({un(s)}∞n=1)ds.

In this paper, we will employ an axiomatic definition for the phase space B which is
similar to those introduced by Hale and Kato [16]. Specifically, B will be a linear space
of functions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B, and satisfies the
following axioms:

(A1) If x : (−∞, T ] −→ X is continuous on J and x0 ∈ B, then xt ∈ B and xt is
continuous in t ∈ J and

‖x(t)‖ ≤ C‖xt‖B, (2.1)

where C ≥ 0 is a constant.

(A2) There exist a continuous function C1(t) > 0 and a locally bounded function
C2(t) ≥ 0 in t ≥ 0 such that

‖xt‖B ≤ C1(t) sup
s∈[0,t]

‖x(s)‖+ C2(t)‖x0‖B, (2.2)

for t ∈ [0, T ] and x as in (A1).

(A3) The space B is complete.

Remark 2.8. Condition (2.1) in (A1) is equivalent to ‖φ(0)‖ ≤ C‖φ‖B, for all φ ∈ B.



Fractional Integro-Differential Equations 21

Example 2.9 (The phase space Cr × Lp(g,X)). Let r ≥ 0, 1 ≤ p < ∞, and let
g : (−∞,−r)→ R be a nonnegative measurable function which satisfies the conditions
(g−5), (g−6) in the terminology of [25]. Briefly, this means that g is locally integrable
and there exists a nonnegative, locally bounded function Λ on (−∞, 0], such that g(ξ +
θ) ≤ Λ(ξ)g(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a set
with Lebesgue measure zero.

The space Cr × Lp(g,X) consists of all classes of functions ϕ : (−∞, 0] → X,
such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and g‖ϕ‖p on (−∞,−r).
The seminorm in ‖ · ‖B is defined by

‖ϕ‖B = sup
θ∈[−r,0]

‖ϕ(θ)‖+

(∫ −r
−∞

g(θ)‖ϕ(θ)‖pdθ
) 1

p

.

The space B = Cr × Lp(g,X) satisfies axioms (A1), (A2), (A3). Moreover, for r = 0

and p = 2, this space coincides with C0 × L2(g,X), H = 1,M(t) = Λ(−t)
1
2 , K(t) =

1 +

(∫ 0

−r
g(τ)dτ

) 1
2

, for t ≥ 0 (see [25, Theorem 1.3.8] for details).

A continuous map N : D ⊆ Y → Y is said to be a α-contraction if there exists a
positive constant ν < 1 such that α(N(C)) ≤ να(C) for any bounded closed subset
C ⊆ D.

Theorem 2.10 (Darbo–Sadovskii, see [5]). If D ⊆ Y is bounded closed and convex,
the continuous map N : D → D is a α-contraction, then the map N has at least one
fixed point in D.

3 Existence of Mild Solutions
In this section, we study the existence of mild solutions for the system (1.1). We give
first the definition of the mild solution of the our problem.

Definition 3.1. A function x : (−∞, T ] → X is said to be a mild solution of (1.1) if
x0 = φ, xρ(τ,xτ ) ∈ B for every τ ∈ J and

x(t) =

 φ(t), t ∈ (−∞, 0];

−Q(t)φ(0) +

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ))dτds, t ∈ J ,

where

Q(t) =

∫ ∞
0

ξq(σ)S(tqσ)dσ, R(t) = q

∫ ∞
0

σtq−1ξq(σ)S(tqσ)dσ
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and ξq is a probability density function defined on (0,∞) such that

ξq(σ) =
1

q
σ−1−(

1
q
)$q(σ

− 1
q ) ≥ 0,

where

$q(σ) =
1

π

∞∑
k=1

(−1)k−1σ−qk−1
Γ(kq + 1)

k!
sin(kπq), σ ∈ (0,∞).

Remark 3.2. Note that {S(t)}t≥0 is a uniformly bounded, i.e.,

there exists a constant M > 0 such that ‖S(t)‖ ≤M for all t ≥ 0.

Remark 3.3. According to [31], direct calculation gives that

‖R(t)‖ ≤ Cq,M t
q−1, t > 0, (3.1)

where Cq,M =
qM

Γ(1 + q)
.

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J×B → (−∞, T ] is continuous. Additionally, we introduce
following hypothesis:

(Hϕ) The function t→ ϕt is continuous fromR(ρ−) into B and there exists a continu-
ous and bounded function Lφ : R(ρ−)→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.4. The condition (Hϕ) is frequently verified by functions continuous and
bounded. For more details, see for instance [25].

Remark 3.5. In the rest of this section, C∗1 and C∗2 are the constants

C∗1 = sup
s∈J

C1(s) and C∗2 = sup
s∈J

C2(s).

Lemma 3.6 (See [23]). If x : (−∞, T ]→ X is a function such that x0 = φ, then

‖xs‖B ≤ (C∗2 + Lφ)‖φ‖B + C∗1 sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

Let us introduce the following hypotheses:
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(H1) The function f : J × B ×X −→ X is Carathéodory.

(H2) There exists a function µ ∈ L1(J,R+) and a continuous nondecreasing function
ψ : R+ → (0,+∞) such that

‖f(t, v, w)‖ ≤ µ(t)ψ (‖v‖B + ‖w‖X) , (t, v, w) ∈ J × B ×X.

(H3) For each t ∈ J , a(t, s) is measurable on [0, t] and a(t) = ess sup{|a(t, s)|, 0 ≤
s ≤ t} is bounded on J. The map t→ at is continuous from J to L∞(J,R), here,
at(s) = a(t, s).

(H4) For any bounded sets D1 ⊂ B, D2 ⊂ X , and 0 ≤ s ≤ t ≤ T , there exists an
integrable positive function η such that

α (R(t− s)f(τ,D1, D2)) ≤ ηt(s, τ)

(
sup

0<θ≤τ
α(D1(θ)) + α(D2)

)
,

where ηt(s, τ) = η(t, s, τ) and sup
t∈J

∫ t

0

∫ s

0

ηt(s, τ)dτds = η∗ <∞.

Theorem 3.7. Suppose that the assumptions (Hϕ), (H1)–(H4) hold, and if

4 a η∗(1 + C∗1) < 1, (3.2)

then the problem (1.1) has at least one mild solution on (−∞, T ].

Proof. Let φ : (−∞, T ] −→ X be the extension of φ to (−∞, T ] such that φ(θ) =
φ(0) = 0 on J. Consider the space Y = {u ∈ C(J,E) : u(0) = φ(0) = 0} endowed
with the uniform convergence topology and define the operator Φ : Y → Y by

Φ(x)(t) = −Q(t)φ(0) +

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ))dτds, t ∈ J.

Let the set
Br = {x ∈ Y : ‖x‖ ≤ r},

where r is any fixed finite real number which satisfies the inequality

r ≥M‖φ‖B + aCq,M
T q

q
ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

) ∫ T

0

µ(τ)dτ. (3.3)

Clearly, the subset Br is closed, bounded, and convex. In order to apply Theorem 2.10,
we give the proof in several steps.



24 K. Aissani and M. Benchohra

Step 1: Φ is continuous. Let {xk}k∈N be a sequence such that xk → x in Y. Then for
each t ∈ J , we have

‖φ(xk)(t)− φ(x)(t)‖ ≤
∫ t

0

∫ s

0

‖R(t− s)‖‖a(s, τ)‖‖f(τ, xkρ(τ,xkτ ), x
k(τ))

− f(τ, xρ(τ,xτ ), x(τ))‖dτds

≤ aCq,M

∫ t

0

∫ s

0

(t− s)q−1‖f(τ, xkρ(τ,xkτ ), x
k(τ))

− f(τ, xρ(τ,xτ ), x(τ))‖dτds.

Since f is of Carathéodory type, we have by the Lebesgue dominated convergence the-
orem that

‖Φ(xk)(t)− Φ(x)(t)‖ → 0 as k →∞.

Thus Φ is continuous.
Step 2: Φ maps Br into itself. If x ∈ Br, from Lemma 3.6 follows that

‖xρ(τ,xτ )‖B ≤ (C∗2 + Lφ)‖φ‖B + C∗1r.

For each x ∈ Br, by (H2) and (3.3), we have for each t ∈ J

‖Φ(x)(t)‖ ≤ ‖ −Q(t)φ(0)‖+

∫ t

0

∫ s

0

‖R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ))‖dτds

≤ M‖φ‖B + aCq,M

∫ t

0

∫ s

0

(t− s)q−1µ(τ)ψ(‖xρ(τ,xτ )‖B + ‖x‖)dτds

≤ M‖φ‖B + aCq,M

∫ t

0

∫ s

0

(t− s)q−1µ(τ)

× ψ
(
(C∗2 + Lφ)‖φ‖B + C∗1r + r

)
dτds

≤ M‖φ‖B + aCq,M
T q

q
ψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

) ∫ T

0

µ(τ)dτ

≤ r.

Step 3: Φ(Br) is bounded and equicontinuous. By Step 2, it is obvious that Φ(Br) ⊂ Br

is bounded. For the equicontinuity of Φ(Br). Set

G(·, xρ(·,x(·)), x(·)) =

∫ ·
0

a(·, τ)f(τ, xρ(τ,xτ ), x(τ))dτ.

Let τ1, τ2 ∈ J with τ1 > τ2, and let x ∈ Br. Then

‖Φ(x)(τ1)− Φ(x)(τ2)‖ ≤ I1 + I2 + I3,
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where

I1 = ‖Q(τ1)−Q(τ2)‖‖φ(0)‖

I2 =

∥∥∥∥∫ τ2

0

[R(τ1 − s)−R(τ2 − s)]G(s, xρ(s,xs), x(s))ds

∥∥∥∥
I3 =

∫ τ1

τ2

‖R(τ1 − s)‖‖G(s, xρ(s,xs), x(s))‖ds.

I1 tends to zero as τ2 → τ1, since S(t) is uniformly continuous operator. For I2, using
(3.1) and (H2), we have

I2 ≤
∥∥∥∥∫ τ2

0

[
q

∫ ∞
0

σ(τ1 − s)q−1ξq(σ)S((τ1 − s)qσ)dσ

− q

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)S((τ2 − s)qσ)dσ

]
G(s, xρ(s,xs), x(s))ds

∥∥∥∥
≤ q

∫ τ2

0

∫ ∞
0

σ‖[(τ1 − s)q−1 − (τ2 − s)q−1]ξq(σ)S((τ1 − s)qσ)

×G(s, xρ(s,xs), x(s))‖dσds

+ q

∫ τ2

0

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)‖S((τ1 − s)qσ)− S((τ2 − s)qσ)‖

×‖G(s, xρ(s,xs), x(s))‖dσds

≤ Cq,M

∫ τ2

0

∣∣(τ1 − s)q−1 − (τ2 − s)q−1
∣∣ ‖G(s, xρ(s,xs), x(s))‖ds

+ q

∫ τ2

0

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)‖S((τ1 − s)qσ)− S((τ2 − s)qσ)‖

×‖G(s, xρ(s,xs), x(s))‖dσds
≤ aψ

(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

)
‖µ‖L1

×
[
Cq,M

∫ τ2

0

∣∣(τ1 − s)q−1 − (τ2 − s)q−1
∣∣ ds

+ q

∫ τ2

0

∫ ∞
0

σ(τ2 − s)q−1ξq(σ)‖S((τ1 − s)qσ)− S((τ2 − s)qσ)‖dσds
]
.

Clearly, the first term on the right-hand side of the above inequality tends to zero as
τ2 → τ1. From the continuity of S(t) in the uniform operator topology for t > 0, The
second term on the right-hand side of the above inequality tends to zero as τ2 → τ1. In
view of (H2), we have

I3 ≤ Cq,M

∫ τ1

τ2

(τ1 − s)q−1‖G(s, xρ(s,xs), x(s))‖ds

≤ a Cq,Mψ
(
(C∗2 + Lφ)‖φ‖B + (C∗1 + 1)r

)
‖µ‖L1

∫ τ1

τ2

(τ1 − s)q−1ds.
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As τ2 → τ1, I3 tends to zero. So Φ(Br) is equicontinuous.
Now let V be a subset of Br such that V ⊂ conv(Φ(V ) ∪ {0}). Using Lemmas

2.5–2.7 and (H4), we get

α(ΦV ) = sup
t∈J

α(ΦV (t))

= sup
t∈J

α

(
−Q(t)φ(0) +

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ))dτds

)
≤ sup

t∈J
α (−Q(t)φ(0))

+ sup
t∈J

α

({∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ))dτds

})
≤ 2 sup

t∈J

∫ t

0

α

({
R(t− s)

∫ s

0

a(s, τ)f(τ, xρ(τ,xτ ), x(τ))dτds

})
≤ 4 sup

t∈J

∫ t

0

∫ s

0

α
({
R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ))dτds

})
≤ 4 a sup

t∈J

∫ t

0

∫ s

0

α
({
R(t− s)f(τ, xρ(τ,xτ ), x(τ))dτds

})
≤ 4 a sup

t∈J

∫ t

0

∫ s

0

ηt(s, τ)

[
C1(t) sup

0<µ≤τ
α(V (µ)) + α(V (τ))

]
dτds

≤ 4 a(1 + C∗1)α(V ) sup
t∈J

∫ t

0

∫ s

0

ηt(s, τ)dτds

≤ 4 a η∗(1 + C∗1)α(V ).

By (3.2) it follows that Φ is a α-contraction. According to Theorem 2.10, the operator
Φ has at least one fixed point x in Br.

4 An Example

In this section we give an example to illustrate the above results. Consider the following
integrodifferential model:

∂q

∂tq
v(t, ζ) =

∂2

∂ζ2
v(t, ζ) +

∫ t

0

(t− s)
∫ s

−∞
γ(τ − s)v(τ − ρ1(s)ρ2(|v(s, ζ)|), ζ)dτds

+

∫ t

0

(t− s)s
2

2
cos |v(s, ζ)|ds, t ∈ [0, T ], ζ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0, T ],

v(θ, ζ) = ϕ(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π],
(4.1)
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where 0 < q < 1, ρi : [0,+∞) → [0,+∞), i = 1, 2, γ : R → R are continuous
functions, and ∂q/∂tq = Dα

t .
Set X = L2([0, π]) and define A by

D(A) = {u ∈ X : u′′ ∈ X, u(0) = u(π) = 0},

Au = u
′′
.

It is well known that A is the infinitesimal generator of an analytic semigroup (S(t))t≥0
on X. For the phase space, we choose B = C0 ×L2(g,X), see Example 2.9 for details.

For t ∈ [0, T ] and ζ ∈ [0, π], we set

x(t)(ζ) = v(t, ζ),

a(t, s) = t− s,

f(t, ϕ, x(t))(ζ) =

∫ 0

−∞
γ(τ)ϕ(τ, ζ)dτ +

t2

2
cos |x(t)(ζ)|.

ρ(t, ϕ) = ρ1(t)ρ2(|ϕ(0)|).

Under the above conditions, we can represent the system (4.1) in the abstract form (1.1).
The following result is a direct consequence of Theorem 3.7.

Proposition 4.1. Let ϕ ∈ B be such that (Hϕ) holds, and let t → ϕt be continuous on
R(ρ−). Then there exists a mild solution of (4.1).
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