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1 Introduction

This paper deals with the existence of solutions to fractional order initial value problems
(IVP for short), for the system

(“Dyu)(z,y) = f(2,y, U@y)), if (z,y) € J, (1.1)
w(z,y) = d(z,y), if (z,y) € J, (1.2)
u(x,0) = ¢(x), u(0,y) = Y(y), z €[0,a], y € [0,b], (1.3)

whereJ = [0,a] x [0,0], a,b > 0, J = (—00,a] x (—o0,b]\(0,a] x (0,b], Dy is the
standard Caputo’s fractional derivative of ordet (ry,r5) € (0,1] x (0,1], f: J X
B — R", ¢:.J — R™ are given continuous functions,: [0,a] — R, ¢ : [0,b] — R™
are given absolutely continuous functions witf0) = 1(0), ¢(z) = ¢(x,0), P(y) =
»(0,y) foreach(z,y) € JandB is called a phase space that will be specified in Section
3.

We denote by, , the element of3 defined by

Uy (8, 1) = u(z + s,y +1); (s,t) € (=00,0] x (—=00,0],

hereu, (-, -) represents the history of the state from timeo up to the present time
x and from time—oc up to the present timg.

Next we consider the following initial value problem for partial neutral functional
differential equations

Dy (ule,y) — 9l 9. 1)) = F@y uey). i @y) € d (14)
w(z,y) = d(z,y), if (z,y) € J, (1.5)
u(x,0) = ¢(x), u(0,y) = Y(y), x €[0,a], y € [0,b], (1.6)

wheref, ¢, o, are as in problem (1.1)—(1.3) apd J x B — R" is a given continuous
function.

The problem of existence of solutions of Cauchy-type problems for ordinary differ-
ential equations of fractional order in spaces of integrable functions without delay was
studies in numerous works see [23,36]), a similar problem in spaces of continuous func-
tions was studies in [37]. We can find numerous applications of differential equations of
fractional order in viscoelasticity, electrochemistry, control, porous media, electromag-
netic, etc. (see [11,13, 14,19, 29, 30, 32]). There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the monographs
of Kilbas [25], Lakshmikantham et al. [26], Miller and Ross [31], Samko [35], the pa-
pers of Abbas and Benchohra [1, 2], Agarwal et al. [3], Belarbi et al. [4], Benchohra
et al. [5-7], Diethelm [11, 12], Kilbas and Marzan [24], Mainardi [29], Podlubny [34],
Vityuk and Golushkov [38], and the references therein.
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In this paper, we present existence and uniqueness results for problems (1.1)—(1.3)
and (1.4)—(1.6). We give two results for each problem, the first one (Theorem 4.3, Theo-
rem 4.9) is based upon the Banach’s contraction principle and the second one (Theorem
4.5, Theorem 4.10) on the nonlinear alternative of Leray—Schauder.

For integer order derivative, various classes of hyperbolic differential equations were
considered; see for instance, the book by Kamont [21], the papers by Czlapinski [8, 9],
Dawidowski and Kubiaczyk [10], Kamont and Kropielnicka [22], Lakshmikantham and
Pandit [27], Pandit [33]. This paper initiates the study of fractional order hyperbolic
differential equations with infinite delay involving the Caputo fractional derivative.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. By (J, R") we denote the space of Lebesgue-integrable
functionsu : J — R"™ with the norm

a b
fullo = [ [ lute)ldyd
0 0

where||.|| denotes a suitable complete normih AC(J, R") is the space of absolutely
continuous valued functions oh

Definition 2.1 (See [34]).Letr,, 7o > 0 andr = (r1,r3). Foru € L*(J,R"), the
expression

1 e
Lu)(z,y) = ———— z— )"y — )2 tu(s, t)dtds,
e el A D (R e)
whereI(.) is the gamma function, is called the left-sided mixed Riemann—Liouville
integral of order-.

Definition 2.2 (See [34]).Foru € L*(J,R"), the Caputo fractional-order derivative of
orderr is defined by the expression

CDpue) = (1 5) ()

3 The Phase Spacé®

The notation of the phase spaBeplays an important role in the study of both quali-
tative and quantitative theory for functional differential equations. A usual choice is a
seminormed space satisfying suitable axioms, which was introduced by Hale and Kato
(see [16]). For further applications see for instance the books [17, 20, 28] and their
references.
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Forany(z,y) € J denoteE, ,y := [0, z] x{0}U{0} x[0, y|, furthermore in case =
a, y = b we write simplyE. Consider the spadds, ||(+,)||s) is a seminormed linear
space of functions mapping-oc, 0] x (—oc, 0] into R", and satisfying the following
fundamental axioms which were adapted from those introduced by Hale and Kato for
ordinary differential functional equations:

(A1) If 2 : (=00, a]x(—o0,b] — R"™ continuous oy andz,, € B, forall (z,y) € E,
then there are constants K, M > 0 such that for anyz, y) € J the following
conditions hold:

(@ Z(z,y) isin B;
@) [l2(z, Yl < Hllz@ |5,

(i) [zeyplls <K sup  |z(s,0)[[+ M sup  [[zspl5,
(s,£)€[0,2] x[0,y] (8)EE (4 )

(Az) Forthe functionz(-, -) in (A1), 2. is aB-valued continuous function on.
(A3) The space3 is complete.
Now, we present some examples of phase spaces [8, 9].

Example 3.1.Let B be the set of all functions : (—oo, 0] x (—o0, 0] — R"™ which are
continuous on—«, 0] x [—/3,0], «, 5 > 0, with the seminorm

16l = sup lp (s, )]

(S7t) € [—OJ,O} X [_ﬂvo]

Then we haved = K = M = 1. The quotient spacg = B/||.|| is isometric to the
spaceC([—«, 0] x [—0,0],R"™) of all continuous functions from-«;, 0] x [/, 0] into

R™ with the supremum norm, this means that partial differential functional equations
with finite delay are included in our axiomatic model.

Example 3.2. Let C, be the set of all continuous functiogs: (—oo, 0] x (—o0, 0] —
R" for which a Iimit| lim et ¢(s,t) exists, with the norm

(s,t)[| =00

I¢llc, = sup et (s, 1)]].
(s,t)€(—00,0] X (—00,0]

Then we haved = 1 andK = M = max{e ™" 1},

Example 3.3.Let«, 3,~v > 0 and let

0 0
lolles, = s s )] + / / || (s, 1) deds
x|—3,0 —00 J —00

(s,t)€[—a,0]
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be the seminorm for the spa€d.., of all functions¢ : (—oo, 0] x (—o0, 0] — R™ which
are continuous oft-«, 0] x [—(3, 0] measurable of+-oco, —a] x (—o0, 0] U (—o0, 0] x
(—o0, —f], and such thaf¢|| ¢, < co. Then

0 0
H=1, K =/ / W dtds, M = 2.
—adJ-p

4 Main Results

Let us start by defining what we mean by a solution of the problem (1.1)—(1.3). Let the
space

Q:={u:(—o00,a] x(—00,b] = R": u, € Bfor(z,y) € E andu|; € C(J,R")}.

Definition 4.1. A function v € (1 is said to be a solution of (1.1)—(1.3)f satisfies
equations (1.1) and (1.3) ehand the condition (1.2) od.

Let f € L*(J,R") and consider the problem

{ (“Dgu)(z,y) = f(z,y); a.e.(z,y) € J, @.1)
u(z,0) = p(z), u(0,y) = ¥(y), ¢(0) = (0). '

For the existence of solutions for the problem (1.1)—(1.3), we need the following lemma.

Lemma 4.2 (See [1,2])A functionu € AC(J,R") is a solution of probleni.1)if and
only if u(z,y) satisfies

u(w,y) = p(r,y) + (o f)(z,y); ae(r,y) € J, (4.2)

where
p(z,y) = o) +¥(y) — ¢(0).

Ouir first existence result for the IVP (1.1)—(1.3) is based on the Banach contraction
principle.

Theorem 4.3. Assume

(H;) there existg > 0 such that

1/ (2, y,u) = [, y,0)[| < llu—vl|s, foranyu, v € Band(z,y) € J.

(Ka™b"™
C(ri+ DI (re + 1)
then there exists a unique solution for IVR1){1.3)on (—oo, a] x (—o0, b].

<1, (4.3)



5] S. Abbas and M. Benchohra

Proof. Transform the problem (1.1)—(1.3) into a fixed point problem. Consider the op-
eratorN : Q — ) defined by,

o,y (z,y) € J,

N()(z,y) = { @9+ 775505 / / )y — )t
7’1 7“2
X f(s,t,us, t))dtds (x,y) € J.

Leto(-,-) : (—o0,al x (—o0,b] — R" be a function defined by

v(x = ¢<£,y), (x,y)GJ,
(z,9) { ( _

Thenv,,) = ¢ forall (z,y) € E. For eachw € C(J,R") with w(x,y) = 0 for each
(xz,y) € E we denote byw the function defined by

_ |0, (
wle.y) = { wz.y) (z.y) e/

If u(-,-) satisfies the integral equation,

1 * Y ri—1 ro—1
u(z,y) = p(z,y) + W/o /O (=) "y — 1) f(s,t, ugs)dtds,

we can decompose(-,-) asu(z,y) = w(x,y) + v(z,y); (z,y) € J, which implies
U(zy) = W(ay) T V(ay), fOr every(z,y) € J, and the functionu(-, -) satisfies

(.%’ y / / m 1 — t)”*lf(S?ta@(s,t) + U(S,t))dtds.
7hl 7”2
Set
Ch = {w e C(LR) : w(r,y) =0 for (v,y) € ).

and let|| - || (a5 be the seminorm i, defined by

[wll@p = sup |lwayls+ sup [[w(z,y)|| = sup [w(z,y)|, we Co.
(z,y)ER (z,y)ed (z,y)ed

Cy is a Banach space with norjn ||, ;. Let the operatoP : C;, — C; be defined by

1 rory
(Pw)(x,y —/0 /0 (x—s)rl_l(y—t)”_lf(s,t,@(s,t)—i—v(s,t))dtds, (4.4)

)= ()

for each(z,y) € J. Then the operatoN has a fixed point is equivalent t8 has a
fixed point, and so we turn to proving th& has a fixed point. We shall show that
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P : Cy — Cis a contraction map. Indeed, considerw™ € C,. Then we have for
each(x,y) € J

1P(w)(z,y) — P(w")(z, >”—r o // Sy — et

><Hf(stw(st + Us)) — f(s, 8, W s p) + V(s ) || dtds

< - Tl 1 _t’r‘2_1£_s __*5
o // z—s) )= Wy — WG|
< // (x—s)" Ny =)= UK

L(r)T(r2)

x sup  ||w(s,t) —w*(s,t)|dtds

stG[Ox]XOy

< ok [ [ @it i
7‘2
ﬁKx”y” . —

< [ — w*|(a,)-

F(’T’l + 1)F(T2) + 1
Therefore

(Ka™b"™ _
P (a, w — w* a,b)

and henceP is a contraction. Thereford; has a unique fixed point by Banach’s con-
traction principle. O

In the sequel we will make use of the following generalization of Gronwall’'s lemma
for two independent variables and singular kernel.

Lemma 4.4 (See [18])Letv : J — [0, 00) be a real function and (-, -) be a nonneg-
ative, locally integrable function od. If there are constants > 0 and0 < ry,ry < 1

such that . (5.1
Ul S
v(z,y) <w(z,y —i—c// - —dtds,
A A A e VRO

then there exists a constaht= 6(ry, r2) such that

v(z,y) < wlz,y) + dc /Ox /Oy — ;Ef(;)_ 7 dtds,

for every(z,y) € J.

Now we give an existence result based upon the nonlinear alternative of Leray—
Schauder type [15].

Theorem 4.5. Assume



8 S. Abbas and M. Benchohra

(Hy) There exisp, q € C(J,R,) such that

1f (2,9, W)l < p(,y) + q(z,y)||ull5, for (z,y) € J and eachu € B.

Then the IVR1.1)«1.3) has at least one solution ga-oo, a] x (—oo, bl.

Proof. Let P : Cy — () defined as in (4.4). We shall show that the operdtais
continuous and completely continuous.

Step 1: P is continuous. Le{w, } be a sequence such that — w in Cyy. Then

Pt ) = Pl < s | / @=s y— o
1
x || f(s,t wn(s >+vn(st F(8,8, Wis) + V(s ||dtds.

Sincef is a continuous function, we have

2y 2| f (W) Ong) = FC T+ 0e) oo
< a" O (| f (-, Wy + Vi) = FO W00 + 000 oo
- F(Tl + 1)F(7”2 + ].)

— 0asn — oo.

Step 2: P maps bounded sets into bounded set§jnindeed, it is enough show that,
for anyn > 0, there exists a positive constafhsuch that, for eachv € B, = {w €

Co  |[wllap) < 1}, We havel| P(w)]|w < £. Letw € B,. By (H,) we have for each
(x,y) € J,

1P (w)(z,

< / / 7’1 1 _t)”_le(s,t,w(&Q+U(s,t))||dtd8
7"1 7“2
1

_ )y — )2 (s, t)dtd

|// 7t

// )"y — 1) (s, O)l[Wesr) + Vsl pdtds

T’l 7"2

- ||pHoo / / 1Yy — )2V dtds

||q||0077 / CE' . S 'r1 1 . t)rg—ldtds

i+ o
C(ry + D)0 (re + 1)

[Plloc + llgllocn”
F(Tl + 1)F<7’2 + 1)

IN

IN

= 0
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where

W (s,0) + V(s || B |0 (s.0)l| B + Vsl B

<
< Kn+ K[[¢(0,0)] + M|[ll5 := n".
Hence|| P(w)]|s < (.

Step 3: P maps bounded sets into equicontinuous setSginLet (x1,y1), (z2,y2) €
(0,a] x (0,b], z1 < 22, 11 < y2, B, be a bounded set as in Step 2, anddet B,. Then

||P( )(9527@2) 951791 ”
1 y1

< IQ

) e — 1) = (2 — 8) T (g — 6)2 7Y
7“1 7’2

Y2
X f(8,, (s )dtds + ———— — )"y — )
f<87 ) U( 7t)) 5+ F Tl ,,,,2) /9;1 /y1 (1'2 3) (yQ )
X f(s,t w(st + V(s ) dtdsH

xr1

‘ yg — t)rzilf(s, t,w(si) + U(Sﬂg))dtdS
7”1 7”2

Y1
Y1

(m2 — )" " Hya — )7 f (8,6, W0 + V(s ) )dids

’I"l ’I"g
poo+ 4|0 r ro—
I H H H 77/ / Ly — 1)L

<
—(332 — s)” 1 — )2t dtds
$2
x1 Y1
] 2
+||p||oo ! ||q||oon | / s et
Y1
Y1
+ ||p||00 + ||q||oo77 / / r1 1 y2 - t)rzfldtds
||p||oo + ||Q||oo77 .
= T+ DE(r, 1) % 2 7o) )
—(@2 — 1) (2 — y1)"™ + 2777 — 25'y5°]
[Plloo + [1q]l0cn r T
T(rs + D(ry + 1) 2~ ) 02— 0)
F(T’l + 1)F(’T‘2 + 1) [ZEQl - (‘r2 - xl) 1]<y2 - yl) 2
[Pllsc + [lallocn o .
F(Tl + 1)F(7"2 + 1)( - xl) 1[y22 - (y2 - yl) 2]
Plloc + 1191l r r r r
B R

C(ry + D0 (re + 1)
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T1,,T2 T1,,T2

+a'y? — wy'yy” — 2(we — 1) (Y2 — y1)"™).

As x; — x9, y1 — ¥ the right-hand side of the above inequality tends to zero. As a
consequence of Stepgo 3, together with the Arzela—Ascoli theorem, we can conclude
thatP : Cy — Cjy is continuous and completely continuous.

Step 4 (A priori bounds): We now show there exists an open &etC C, with w #
AP(w), for A € (0,1) andw € 0U. Letw € Cy andw = AP(w) for some0 < \ < 1.
Thus for eachz,y) € J,

w(x,y) / / Tl 1 — t)TQ_lf(S,t,U(&t))dtdS.
7”1 7’2
This implies by (H) that, for each{z,y) € J, we have

fute. ) < mm [ ] @ =0l

+q<s,t>||w i) + el pldids
[Plloo ”b”
F(Tl —|— 1 7"2 +

// )y — ) (s, 8) [ Ws ) + Vsl pdtds.
7“1 7“2

But

| Wsty + vispyllz < W lls + |vesslls

< sup{w(5,?) : (5,1) € [0, 5] x [0,#]} + M||¢]|5 + K[|(0,0)

|. (4.5)
If we namez(s, t) the right-hand side of (4.5), then we have

[t + v lls < 2(2,9),
and therefore, for eadlr, y) € J we obtain

< lplat
~I(r + 1)F ro + 1)

(T () // )1y — )2 (s, ) 2(s, t)dtds.  (4.6)

lw(z, )

Using the above inequality and the definitionzdbr each(x, y) € J we have

K p]lca b
) < Moz + K|l6(0,0)]| +
(r.y) Il -+ KlI90. 0+ 0 155, 71

K . -
lel // )Yy — 1) e (s, £ dtds.
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Then by Lemma 4.4, there exists= 6(ry, r2) such that we have

lx(@y)| < R+ ”q”w / / 9"y — 1) Ratds,

where

K|lpllsa™b"
F(Tl + 1)F(T2 + 1) '

R = M| 9|z + K| 6(0,0)] +

Hence
R6K||q]|s0a™ b —~

T+ D(rp +1) M.

Iz]loc < R+

Then, (4.6) implies that
'I’lb'l’g

Wl|oo < OO+M ) i= M.
ol < ity e + 3l

Set
U = {w e Cy: Hw[|(a7b) <M+ 1}

P : U — (,is continuous and completely continuous. By our choicé/pthere is
now € OU such thatw = AP(w), for A € (0,1). As a consequence of the nonlinear
alternative of Leray—Schauder type [15], we deduce thdas a fixed point which is a
solution to problem (1.1)—(1.3). O

Now we present two similar existence results for the problem (1.4)—(1.6).

Definition 4.6. A functionu €  is said to be a solution of (1.4)—(1.6).f satisfies
equations (1.4) and (1.6) chand the condition (1.5) od.

Let f € L'(J,R") andg € AC(J,R") and consider the following linear problem
Dy <U(w,y) - g(fr,y)) = f(z,y); a.e.z,y) € J, (4.7)
u(z,0) = p(x), w0, y) =¥(y); (z,y) € J, (4.8)

with ¢(0) = (0). For the existence of solutions for the problem (1.4)—(1.6), we need
the following lemma.

Lemma 4.7. A functionu € AC(J,R") is a solution of problenf4.7)4.8)if and only
if u(z,y) satisfies

u(w,y) = pu(r,y) +g(x,y) — g(x,0) — g(0,y) + 9(0,0) + Ig(f)(z,y),  (4.9)

fora.e.(z,y) € J.
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Proof. Let u(x,y) be a solution of problem (4.7)—(4.8). Then, taking into account the
definition of the fractional Caputo derivative, we have

Iy (Diy(U(% y) — gl y)) = f(z,).

Hence, we obtain
15 (B D2, ) (e, y) — 9(w,9)) = (1) (@),
then
102, (u(w,y) = 9lw,9)) = (i) (@)
Since
Iy(D3,) (U(m, y) —g(, y)) = u(z,y) —u(x,0) —u(0,y) + u(0,0)
—lg9(z,y) — g(x,0) — g(0,y) + g(0,0)],

we have
u(z,y) = p(x,y) + 9(z,y) — g(,0) — g(0, ) + 9(0,0) + I5(f)(z, y).
Now letu(x, y) satisfy (4.9). Itis clear that(z, y) satisfies (4.7)—(4.8). ]
As a consequence of Lemma 4.7 we have the following auxiliary result

Corollary 4.8. The function: € €2 is a solution of problen(l1.4)<(1.6)if and only ifu
satisfies the equation

1 ‘ Y r1—1 ro—1
u(z,y) = m/o /0(1:—5) (y— 1) f(s,t, usyy)dsdt

+:U($a y) + g($7 Y, u(a:,y)) - g(g,"’ 0, u(x,O))
_g(o’ Y, u(O,y)) + 9(07 07 u(0,0)):

for all (x,y) € J and the conditior{1.5)on J.
Theorem 4.9. Assume thafH;) holds and moreover
(H}) there exists a nonnegative consténsuch that
lg(x,y,u) — g(z,y,v)|| < |lu—vl|p, foreach(z,y) € J, andu, v € B.
la™ b

K |40 1 4.10
CESI TS (4.10)

then there exists a unique solution for IYP4){1.6)on (—oo, a] x (—o0, b].
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Proof. Consider the operatady; : 2 — 2 defined by,

( ¢(x7y)u (I,y) S j,
ﬂ’(xa y) + g(l', Y, U’(I,y)) - g(xﬂ 07 u(x,O))
—4(0,y, 0,0,
N (w)(z,y) = 9( 7?41 U(o,y)) - g(y U(0,0)) 1 1
T — x— )"y — 1)
e )
X f(s,t, ugsy)dtds, (r,y) € J.

\

In analogy to Theorem 4.3, we consider the oper&tor Cy — C, defined by

Pl( y) :g(l’ y7m(1’y) +U(acy)) —g(l’ 0 w50)+v(s,0))
- ¢(0, y, W(o,y) + V(o)) + 9(0,0,W0,0) + v(0,0))

/ / Y1y — )2 f (5,8, W gy + V(s )dtds, (z,y) € J.
['(ry)L(r2)

We shall show that the operatéy is a contraction. Let, w, € Cy, then following the
steps of Theorem 4.3, we have

[ P1(w) (2, y) — Pr(w) (@, 9) | < [|lg(z, y, Way) + V@) — 9(@, 4, Wi (ay) + V)l
+g(7,0,W(z,0) + Ve,0)) — 9(7,0, Wy (4.0 + V(z0)) |
+119(0, 4, Wio.) + vi0)) — 9(0, ¥, Wi0,y) + Vo)
—l—Hg(OOw—H) OOw*(OO)—ir'UOO)H

I_Svl 1 t)?"z—l
7’1 7"2

X || f(s,t, Wis +v(st)) f (8,8, W5 (5 0y + V(s || dEds

< 4€/K —_—* a 7"1 1 _t ro—1
< ACKIT =Tl + re | [ - )
x K @ — wz| dtds.

Therefore
la™ bh"?
F(Tl —|— 1)F(T2) —f- ]_

which implies by (4.10) thaP; is a contraction. Henc#; has a unique fixed point by
Banach’s contraction principle. ]

HWM—HWMwﬁKFW+ }W—WMW

Our last existence result for the IVP (1.4)—(1.6) is based on the nonlinear alternative
of Leray—Schauder type.

Theorem 4.10. AssumdH,) and the following conditions:

(Hs3) the functiong is continuous and completely continuous, and for any bounded set
DinQ, the sef{(z,y) — g(x,y, u@my)) : v € D}, is equicontinuous id'(J,R").
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. 1
(H4) There exist constants< d; K < 7 dy > 0 such that
||g(x,y,u)|| S d1||u||B + d?a ([E,y) € ‘]7 u € B.

Then the IVR1.4)«(1.6) has at least one solution gh-oo, a] x (—oo, b].

Proof. Let P, : Cy — () defined as in Theorem 4.9. We shall show that the operator
Py is continuous and completely continuous. Using)(H suffices to show that the
operatorpP, : Cy — C, defined by

Py(w)(2,y) = 9(7, Y, Wiay) + Vay)) — 9(,0,We0) + V(z,0))
—9(0, y7w(0y + v(0,)) + 9(0,0,W(0,0) + v(0,0))

/ / rl 1 - t)m_lf(sv t w(s,t) + U(s,t))dtds>
L(r)L(r9)

is continuous and completely continuous. This was proved in Theorem 4.5. We now
show there exists an open gétC C, with w # APx(w), for A € (0,1) andw € 9U.
Letw € Cy andw = Apy(w) for somed < A < 1. Thus for eacliz,y) € J,

w(z,y) = Ag(T,y, Wiay) + Vay) — 9(2, 0, W(z0) + Vo)
—9(0, % Wo,y) + Vo)) + 9(0,0,W(0,0) + v0,0))]

/ / )y — )27 f (5,8, Wap) + V(s dids,
Tl 7"2

and

[p]|oca™ b
F( 1 + 1)F<7‘2 + 1)

/ / Iy — 12 (s, )l + vy | pdtds.
7“1 7”2

|w(z,y)|| = 4d1|!@<x,y> + Ve llB +

Using the above inequality and the definitionzolve have that

Ri6K||q*]|s0a™b"

o <R =1L,
Illee = Br+ T3 0 + DT (e £ 1)
where

1 K||p||cca™b™

Ri=—— |8K
Tk Pt T T UT e 1 D)
and
lqlloo

g oo = m
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Then
Wl < 4dy||@|| + 8ds + 4Ld,
a™ b2 I
+ o+ -
= L*.
Set

U, = {U) € C() : ||w||(a7b) < L*+ 1}

By our choice ofU;, there is naw € 0U such thatw = AP»(w), for A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [15], we deduce that
N, has a fixed point which is a solution to problem (1.4)—(1.6). ]

5 An Example

As an application of our results we consider the following partial hyperbolic functional
differential equations of the form

cetty—(z+y) %

z)l if (z,y) €J:=[0,1] x[0,1], (5.1)

(CDSU)(LL', y) = <€x+y + e—m—y)(l + ”U(z,y)>H)’

u(z,0) =z, u(0,y) = y*, = €10,1], y € [0,1], (5.2)

u(z,y) =z +y°, (z,y) € J, (5.3)
2

whereJ = (—oo, 1] X <_Oou 1]\(07 1] X (0’ 1]’ €= F(T1 + 1)F(7"2 + 1)

real constant. Let

and~ a positive

B, = {u € C((—o0,0] X (—00,0],R) : lim "% My (h, ) exists in]R} .

[1(0.m)||—o00

The norm ofB5, is given by

Jully = sup "t u(0,n)|.
(0,m)€(—00,0]x (—o0,0]

Let
B = 0,1 x {0} U {0} x [0, 1],

andu : (—o0, 1] x (=00, 1] — R such thaty, ) € B, for (z,y) € E. Then

lim ey, (0, = lim Y@= +1=v)q (0,
1(0.m) ]| —o00 () (0, 7) 11(6,m) |00 (6.m)
= ) lim w(6,
1(0.m) | —o0 (6,)

< 0oQ.
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Henceu,,) € B,. Finally we prove that

||u($7y)”V - Ksup{|u(s,t)| : (S7t) S [07'T] X [07y]}
+M sup{|lucsplly : (s,t) € By},

whereK =M =1landH =1. Ifx+60 <0, y+n <0, then we get
’|u(x7y)||’7 - Sup{‘“(‘svt)‘ : (Sat) € (_0070] X (—OO,O]}7
andifr+6 >0, y+n >0, then we have
||u(:r,y)||7 = Sup{|u(87t)| : (S7t) S [O,I‘] X [an]}
Thus for all(z + 60,y +n) € [0,1] x [0, 1], we get

Hu(ﬂc,y)H'y = sup{]u(s,t)] : (Sat) € (_0070] X (—O0,0]}
+sup{lu(s, )] : (s,t) € [0, 2] x [0, y]}.
Then
[u@yplly = sup{lluylly - (s,1) € £}
+sup{lu(s, t)| : (s,t) € [0, 2] x [0, y][}.
(B,, |I-]l4) is a Banach space. We conclude thatis a phase space. Set

x,y)” (
— , (z,y) €10,1] x [0,1].
erty 4 e~ y)(l + ||u(a:,y))H

f<x7y7 U(Ly)) = (

For eachu, w € B, and(z,y) € [0, 1] x [0, 1] we have

e lu —ulls
c(evt¥ + e=7Y)

|f(x7ya u(:}c,y)) - f(xa yaﬂ(ac,y))‘ <

1 _
< “llu =l
c

Hence condition (k) is satisfied withY = —. Sincea = b = K = 1 we get
C

la™ b K B 1 1 <1
D(ry + D)0(ra +1)  cl(ri+D0(re +1) 2 ’
for each(r,7m5) € (0,1] x (0,1]. Consequently Theorem 4.3 implies that problem
(5.1)—(5.3) has a unique solution defined(enx, 1] x (—oo, 1].
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