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Abstract
Consider fractional initial value problem

Dq
0+
x(t) = −f(t, x(t)), lim

t→0+
t1−qx(t) = x0 6= 0,

where f : (0,∞)×R→ R is continuous, and Dq
0+

denotes the Riemann–Liouville
differential operator of order q ∈ (0, 1). By studying an equivalent Volterra integral
equation, we show the existence of a continuous solution on (0, T ] for some T > 0.
We then show for a special case when f(t, x) = x + g(t, x) that if a continuous
solution exists on (0,∞), then it is absolutely integrable on the same interval.

AMS Subject Classifications: 34A08, 34A12, 45D05, 45E10, 45G05.
Keywords: Fractional differential equation, Volterra integral equation, existence of so-
lutions, uniqueness of solutions, absolute integrability.

1 Introduction
It is known that many real world problems can be modeled by the fractional initial value
problem of Riemann–Liouville type:

Dq
0+x(t) = −f(t, x(t)), lim

t→0+
t1−qx(t) = x0 6= 0. (1.1)
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For various results on (1.1) in terms of theory and applications, we refer the interested
reader to [4,6–8,10,11]. We also refer to [1–3] for more recent studies on the existence
of solutions of the initial value problem (1.1).

In the present paper, we study (1.1) where f : (0,∞) × R → R is continuous, and
Dq

0+ denotes the Riemann–Liouville differential operator of order q ∈ (0, 1) defined by

Dq
0+x(t) =

1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qx(s)ds.

Here Γ : (0,∞)→ R is Euler’s Gamma function defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Under certain conditions, it is known that the initial value problem (1.1) is equivalent
to the Volterra integral equation

x(t) = x0t
q−1 − 1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds. (1.2)

By equivalent, we mean that x is a solution of (1.1) if and only if x is a solution of
(1.2). Some results of equivalence can be found in [1], where equivalence is shown on
an interval (0, T ]. In Section 4, we will assume that (1.1) and (1.2) are equivalent on the
interval (0,∞). In Section 2, an example where (1.1) and (1.2) are equivalent on the
interval (0,∞) is given.

We start with some preliminaries and a motivating example in Section 2. In Section
3, we show the existence of a continuous solution of (1.2) on (0, T ] for some T > 0.
Then in Section 4, we obtain a result showing that if a continuous solution of (1.2) exists
on (0,∞), then it is absolutely integrable on the same interval, i.e., if x is a continuous

solution of (1.2) on (0,∞), then
∫ ∞
0

|x(t)|dt <∞. Absolute integrability of solutions

when they exist is an important issue. We feel that our work of Section 4 in which we
have obtained such a result is an important contribution to the research in Riemann–
Liouville type equations. Although we consider a special case where f(t, x) = x +
g(t, x), we hope that our work will motivate researchers to pursue more general cases.

2 A Motivating Example
Example 2.1. Consider the fractional differential equation

D
1/2

0+ x(t) = −
√
π

2

(√
tx(t)

)3/2
, (2.1)

satisfying the initial condition

lim
t→0+

1√
π

∫ t

0

(t− s)−1/2x(s)ds =
√
π. (2.2)
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In [1], initial condition (2.2) is shown to be equivalent to an initial condition of the form

lim
t→0+

t−1/2x(t) = 1.

It is shown in [1] that the function

x(t) =
1√

t(1 + t)

satisfies (2.1), (2.2) on the interval (0,∞) and also satisfies the integral equation

x(t) =
1√
t
− 1

2

∫ t

0

(t− s)−1/2(
√
sx(s))3/2ds

on (0,∞). Also, notice ∫ ∞
0

x(t)dt =

∫ ∞
0

1√
t(1 + t)

= 2

∫ ∞
0

1

1 + u2
du

= 2 arctanu|∞0
= π.

So x is absolutely integrable on (0,∞).

Motivated by this example, in Section 3, we give conditions when (1.2) has a unique
solution on (0, T ∗] for some T ∗ > 0, where Theorem 3.2 gives equivalence of (1.1) and
(1.2). In Section 4, we assume (1.1) and (1.2) are equivalent on (0,∞). When (1.1) has
a solution x on (0,∞), we give sufficient conditions that imply x is absolutely integrable
on (0,∞).

3 Existence of Solutions
In this section, we present some results on the existence of a continuous solution of (1.1)
without showing detailed proofs. These results can be derived from the results in [2].

Definition 3.1. For a given q ∈ (0, 1), a function ϕ : (0, T ]→ R is said to be a solution
of (1.2) if ϕ is continuous, ϕ satisfies (1.2) on (0, T ], and t1−qϕ is continuous on [0, T )
with lim

t→0+
t1−qϕ(t) = x0.

The following theorem given in [1] establishes some conditions under which (1.1)
and (1.2) are equivalent.
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Theorem 3.2. Let q ∈ (0, 1) and x0 6= 0. Let f(t, x) be a function that is continuous on
the set B = {(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I}, where I ⊂ R is an unbounded interval.
Suppose x : (0, T ] → I is continuous and both x(t) and f(t, x(t)) are absolutely
integrable on (0, T ]. Then x(t) satisfies (1.1) on (0, T ] if and only if x(t) satisfies (1.2)
on (0, T ].

We assume f(t, x) satisfies the following local Lipschitz condition.

(A1) For each T > 0, there exists a k = k(T ) > 0 such that

|f(t, x)− f(t, y)| ≤ k|x− y|,

for all x, y ∈ R, 0 < t ≤ T .

Notice that (A1) implies
|f(t, x)| ≤ k|x|+ |f(t, 0)|.

Define f0(t) = f(t, 0). We also assume f0 ∈ X .
For a fixed T > 0 and for g(t) = tq−1, let X be the space of all continuous functions

ϕ : (0, T ]→ R with

|ϕ|g = sup
0<t≤T

|ϕ(t)|
g(t)

<∞.

It is shown in [2, Theorem 2.2] that (X, | · |g) is a Banach space.

Lemma 3.3. If ϕ ∈ X , then ϕ is absolutely integrable on (0, T ].

The proof of the following lemma can be found in [1, Lemma 4.6]

Lemma 3.4. Suppose ϕ : (0, T ]→ R is a continuous and absolutely integrable function
on (0, T ]. Then

h(t) :=

∫ t

0

(t− s)q−1ϕ(s)ds

is continuous and absolutely integrable on (0, T ].

Define a mapping P on X as follows. For ϕ ∈ X ,

(Pϕ)(t) := x0t
q−1 − 1

Γ(q)

∫ t

0

(t− s)q−1f(s, ϕ(s))ds. (3.1)

Define

bϕ(t) :=

∫ t

0

(t− s)q−1f(s, ϕ(s))ds.

Since f0 ∈ X , (A1) and Lemma 3.4 imply bϕ ∈ X . This implies Pϕ ∈ X . So
P : X → X .
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Theorem 3.5. Suppose assumption (A1) holds and suppose f0 ∈ X . Then there exists
a T ∗ > 0 such that (1.1) has a unique continuous solution on (0, T ∗].

Proof. Let ϕ, ψ ∈ X . Then, by (A1),

|(Pϕ)(t)− (Pψ)(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, ϕ(s))− f(s, ψ(s))|ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1k|ϕ(s)− ψ(s)|ds

≤ 1

Γ(q)
k|ϕ− ψ|g

∫ t

0

(t− s)q−1sq−1ds

=
1

Γ(q)
k|ϕ− ψ|gt2q−1

Γ2(q)

Γ(2q)
.

Therefore
|(Pϕ)(t)− (Pψ)(t)|

tq−1
≤ k|ϕ− ψ|g

Γ(q)

Γ(2q)
tq.

Let T ∗ > 0 be such that

k
Γ(q)

Γ(2q)
tq ≤ k∗ < 1

for 0 < t ≤ T ∗. Thus, we have

|(Pϕ)− (Pψ)|g ≤ k∗|ϕ− ψ|g.

Since k∗ < 1, the mapping P : X → X is a contraction for 0 < t ≤ T ∗. Therefore there
exists a unique continuous ϕ ∈ X such that Pϕ = ϕ. Since ϕ is continuous and both
ϕ(t) and f(t, ϕ(t)) are absolutely integrable on (0, T ∗], (1.1) and (1.2) are equivalent.
Thus ϕ(t) is a unique continuous solution of (1.1) on (0, T ∗].

4 Absolute Integrability of Solutions
In this section, we assume (1.1) and (1.2) are equivalent on (0,∞). Let

C(t− s) =
1

Γ(q)
(t− s)q−1. (4.1)

Then, for f(t, x) = x+ g(t, x), the integral equation (1.2) becomes

x(t) = x0t
q−1 −

∫ t

0

C(t− s)[x(s) + g(s, x(s))]ds. (4.2)

We assume |g(t, x)| ≤ h(t) for t << 1 and all x ∈ R, with

lim
t→0+

t1−q
∫ t

0

C(t− s)h(s)ds = 0. (4.3)
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First, we present some known results regarding (4.2) and the associated resolvent
equation (see [9, pp. 189-193]). A function x is a solution of (4.2) if and only if x
satisfies

x(t) = y(t)−
∫ t

0

R(t− s)g(s, x(s))ds, (4.4)

where the function y is given by

y(t) = x0t
q−1 −

∫ t

0

R(t− s)x0sq−1ds, (4.5)

and the function R, known as the resolvent kernel of C, is the solution of the resolvent
equation

R(t) = C(t)−
∫ t

0

C(t− s)R(s)ds. (4.6)

The functionC defined in (4.1) is completely monotone on (0,∞). Thus by [9, Theorem
6.2], the associated resolvent kernel R satisfies, for t > 0,

0 ≤ R(t) ≤ C(t), R(t)→ 0 as t→∞ (4.7)

and that
C /∈ L1(0,∞) implies

∫ ∞
0

R(t)dt = 1. (4.8)

If x satisfies (4.4), it must satisfy the condition lim
t→0+

t1−qx(t) = x0. To see this, notice

that (4.3) implies

lim
t→0+

t1−q
∣∣∣∣∫ t

0

R(t− s)g(s, x(s))ds

∣∣∣∣ ≤ lim
t→0+

t1−q
∫ t

0

C(t− s)h(s)ds

= 0.

Also,

lim
t→0+

t1−q
∫ t

0

R(t− s)x0sq−1ds ≤ lim
t→0+

t1−q
∫ t

0

1

Γ(q)
(t− s)q−1x0sq−1ds

= lim
t→0+

Γ(q)

Γ(2q)
x0t

q

= 0.

So
lim
t→0+

t1−qx(t) = lim
t→0+

t1−qy(t) = x0.

Thus if x satisfies (4.4), then x is a solution of (1.1).
Suppose there exists a continuous solution x(t) of (4.2) on (0,∞). In this section,

we show that x(t) is absolutely integrable on (0,∞).
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Multiplying both sides of (4.6) by x0Γ(q) gives

x0Γ(q)R(t) = x0Γ(q)C(t)− x0Γ(q)

∫ t

0

C(t− s)R(s)ds

= x0Γ(q)
1

Γ(q)
tq−1 − x0Γ(q)

∫ t

0

1

Γ(q)
(t− s)q−1R(s)ds

= x0t
q−1 − x0

∫ t

0

(t− s)q−1R(s)ds

= x0t
q−1 −

∫ t

0

R(t− s)x0sq−1ds

= y(t),

the last equality coming from (4.5). Therefore y(t) is a constant multiple of R(t). Since
R(t) is continuous, so is y(t), 0 < t <∞. Also, by (4.7) and (4.8), it is clear that∫ ∞

0

y(t)dt <∞.

Remark 4.1. If g(t, x) ≡ 0, then (1.1) becomes the linear initial value problem

Dq
0+x(t) = −x(t), lim

t→0+
t1−qx(t) = x0 6= 0. (4.9)

Here

x(t) = y(t) = x0t
q−1 −

∫ t

0

R(t− s)x0sq−1ds.

Since y(t) is a constant multiple of R(t), this also implies x(t) is a constant multiple of
R(t). Then (4.7) and (4.8) imply that x is absolutely integrable on (0,∞).

For a specific example, consider (4.9) with q =
1

2
and x0 =

1√
π

. In [11, p. 138], it

is shown that the solution of the differential equation is given by

x(t) = C

(
1√
πt
− et erfc(

√
t)

)
,

for t > 0. The initial condition gives C = 1. Notice∫ ∞
0

(
1√
πt
− et erfc(

√
t)

)
dt = 1,

so x is absolutely integrable on (0,∞). In this case, x(t) = R(t), and so

R(t) =
1√
πt
− et erfc(

√
t),

which was shown in [5].
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Assume g satisfies a global Lipschitz condition

|g(t, x)− g(t, y)| ≤ k|x− y| for all t ∈ (0,∞), x, y ∈ R.

This condition implies that

|g(t, x)| ≤ k|x|+ |g(t, 0)| for all t ∈ (0,∞), x ∈ R. (4.10)

Theorem 4.2. Suppose for t << 1, |g(t, x)| ≤ h(t) for all x ∈ R, where h satisfies
(4.3). Suppose g satisfies (4.10) with k < 1,∫ ∞

0

|g(t, 0)|dt <∞,

and

lim
t→0+

∫ t

0

|g(s, 0)|ds = 0.

If there exists a solution x of equation (4.4) on (0,∞), then x is absolutely integrable
on (0,∞).

Proof. Define, for the solution x and for t > 0,

V (t) =

∫ t

0

∫ ∞
t−s

R(u)du[k|x(s)|+ |g(s, 0)|]ds. (4.11)

Now ∫ ∞
t−s

R(u)du ≤
∫ ∞
0

R(u)du ≤ 1.

So ∫ t

0

∫ ∞
t−s

R(u)du[k|x(s)|+ |g(s, 0)|]ds ≤
∫ t

0

[k|x(s)|+ |g(s, 0)|]ds.

Since lim
t→0+

t1−qx(t) = x0, there exists a T > 0 such that

|x0|
2
tq−1 ≤ |x(t)| ≤ 3|x0|

2
tq−1, t ∈ (0, 1).

So

0 ≤ V (t)

≤
∫ t

0

[k|x(s)|+ |g(s, 0)|]ds

≤
∫ t

0

k
3|x0|

2
sq−1ds+

∫ t

0

|g(s, 0)|ds

≤ k
3|x0|tq

2q
+

∫ t

0

|g(s, 0)|ds.
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Since lim
t→0+

∫ t

0

|g(s, 0)|ds = 0, it follows that

lim
t→0+

V (t) = 0.

So V can be defined on [0,∞) so that V (0) = 0.
Next,

V ′(t) =

∫ ∞
0

R(u)du[k|x(t)|+ |g(t, 0)|]−
∫ t

0

R(t− s)[k|x(s)|+ |g(s, 0)|]ds. (4.12)

Since
∫ ∞
0

R(u)du = 1, (4.12) implies that

V ′(t) = [k|x(t)|+ |g(t, 0)|]−
∫ t

0

R(t− s)[k|x(s)|+ |g(s, 0)|]ds. (4.13)

Now, from (4.4),

|x(t)| ≤ |y(t)|+
∫ t

0

R(t− s)|g(s, x(s))|ds

≤ |y(t)|+
∫ t

0

R(t− s)[k|x(s)|+ |g(s, 0)|]ds.

Therefore

−
∫ t

0

R(t− s)[k|x(s)|+ |g(s, 0)|]ds ≤ |y(t)| − |x(t)|.

So (4.13) gives

V ′(t) ≤ k|x(t)|+ |g(t, 0)|+ |y(t)| − |x(t)|
= (k − 1)|x(t)|+ |y(t)|+ |g(t, 0)|.

Integrating from 0 to t yields

V (t)− V (0) ≤ (k − 1)

∫ t

0

|x(s)|ds+

∫ t

0

|y(s)|ds+

∫ t

0

|g(s, 0)|ds.

Since V ′(t) ≥ 0 and V (0) = 0, the previous inequality implies that

(1− k)

∫ t

0

|x(s)|ds ≤
∫ t

0

|y(s)|ds+

∫ t

0

|g(s, 0)|ds. (4.14)

Since ∫ ∞
0

|y(t)|dt <∞
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and ∫ ∞
0

|g(t, 0)|dt <∞,

it follows from (4.14) that ∫ ∞
0

|x(t)|dt <∞,

proving x is absolutely integrable on (0,∞).

Example 4.3. Consider the fractional differential equation

Dq
0+x(t) =

{
−x+ tq−1 − sinx, 0 ≤ t ≤ 1,
−x+ tq−2 − sinx, 1 ≤ t,

lim
t→0+

t1−qx(t) = x0 6= 0. (4.15)

Here

f(t, x) =

{
x− tq−1 + sinx, 0 ≤ t ≤ 1,
x− tq−2 + sinx, 1 ≤ t,

and

g(t, x) =

{
−tq−1 + sinx, 0 ≤ t ≤ 1,
−tq−2 + sinx, 1 ≤ t.

Now
|f(t, x)− f(t, y)| ≤ |x− y|+ | sinx− sin y| ≤ 2|x− y|,

so (A1) holds. Set f(t, 0) = f0(t). Then

|f0(t)|
tq−1

=

{
1, 0 ≤ t ≤ 1,
t−1, 1 ≤ t,

So |f0|g = 1 and f0 ∈ X . Therefore Theorem 3.5 gives the existence of a T ∗ > 0 such
that (4.15) has a unique solution x on (0, T ∗].

Notice for small t, |g(t, x)| ≤ tq−1 + 1. So

t1−q
∫ t

0

1

Γ(q)
(t− s)q−1(sq−1 + 1)ds =

Γ(q)

Γ(2q)
tq +

1

Γ(q + 1)
t,

implying

lim
t→0+

t1−q
∫ t

0

1

Γ(q)
(t− s)q−1(sq−1 + 1)ds = 0.

The Lipschitz condition holds since

|g(t, x)− g(t, y)| = | sinx− sin y| ≤ |x− y|.

Now, ∫ ∞
0

|g(t, 0)|dt =

∫ 1

0

tq−1dt+

∫ ∞
1

tq−2dt =
1

q
+

1

1− q
<∞.
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Finally, for small t, ∫ t

0

|g(s, 0)|ds =
tq

q
.

Hence

lim
t→0+

∫ t

0

|g(s, 0)|ds = 0.

Therefore, if there exists a solution x∗ of (4.15) that can be extended to (0,∞), Theorem
4.2 guarantees that x∗ is absolutely integrable on (0,∞).
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